A Novel Probiotic Drug Delivery Platform for Oral Administration of Protein-Based Therapies
用于口服蛋白质疗法的新型益生菌药物递送平台
基本信息
- 批准号:10544376
- 负责人:
- 金额:$ 28.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-15 至 2024-07-14
- 项目状态:已结题
- 来源:
- 关键词:AdoptionAnimal ModelArthritisBacteriaBiochemical PathwayBiological ProductsBiological Response Modifier TherapyBiomassBioreactorsCarbohydratesCarbonCausticsCell DensityCell RespirationCellsClinical TrialsCytochromesDNADataDevelopmentDiseaseDoseDrug Delivery SystemsEngineeringEscherichia coliEventEvolutionExhibitsFermentationFood PreservationGasesGenesGenetic EngineeringGenetic TranscriptionGoldGram-Positive BacteriaGrowthGut MucosaHalf-LifeHemeHumanImmuneImmune systemImmunologic ReceptorsImmunotherapeutic agentIn SituIndustrializationInfrastructureIntestinesLactococcusLactococcus lactisLeadMalignant NeoplasmsMediatingMetabolic PathwayMetabolismMolecularOralOral AdministrationOxidasesOxygenPathway interactionsPerformancePharmaceutical PreparationsPhasePlayProbioticsProcessProductionProductivityPropertyProtein SecretionProteinsRecombinantsRegulatory PathwayRepressionRespirationRoleSafetySiteSjogren&aposs SyndromeSpeedStressSystemTechnologyTherapeuticTherapeutic AgentsToxic effectTractionTranslatingbacterial metabolismbasecarbohydrate metabolismcostdensitydrug candidategut microbiomehost microbiomeimprovedmanufacturabilitymetabolic respirationmicrobialnovelnovel therapeuticspreclinical studypreventproduct developmentprogramsprotein expressionprotein purificationprototyperesearch clinical testingrespiratorysugarsynthetic biologytherapeutic protein
项目摘要
Project Summary
Oral delivery of protein-based drugs (‘biologics’) would vastly improve and simplify our approach to treat and
prevent disease1-4. However, biologics suffer from low stability and short half-life when administered in oral
form and are sensitive to the caustic conditions of the intestinal tract5-7. Oral delivery of biologics via bacteria
can circumvent these hurdles. Compared to conventional drug delivery systems, bacteria exhibit the
advantages of in situ production of biologicals, targeting ability, and amenability to different payloads. By
leveraging gut microbiome-host immune cell intertwining, bacteria delivery of therapeutics can also lead to
modulation of the host immune response8-10. Rise Therapeutics has pioneered the developed of novel
recombinant strains of the probiotic Lactococcus lactis demonstrating tremendous proof-of-concept for the
approach in over 15 animal models. In these studies, oral delivery of our recombinant probiotics enables
targeted engagement of specific receptors of the immune system to rebalance the host immune repertoire.
Enabled by our in-house GMP manufacturing infrastructure, these recombinant strains are now entering
human clinical testing.
Lactococcus (L.) lactis is one of the most promising bacterial platforms for biologics delivery. L. lactis is a non-
pathogenic, GRAS-designated, Gram-positive bacterium with an extraordinary safety profile in humans,
including use in genetically modified forms to delivery therapeutic protein. In addition to oral delivery of
biologics, microbial systems are a hallmark of industrial production of recombinant proteins11. Engineered L.
lactis has also been employed to express heterologous proteins for industrial applications. While E. coli is the
gold standard, Gram positive bacteria, like L. lactis are gaining traction due to much simpler purification
processes and important proteins` biochemical pathways not supported by Gram negative strains 12, 13.
However, L. lactis platform suffers from manufacturing limitations, where cellular bioreactor densities top off far
below levels require for some commercial purposes. This limitation increases cost of goods, prevents use of
higher doses in humans, and curb its use for industrial protein expression applications. Achieving high yield
densities of pure and stable recombinant bacteria is essential to enabling commercially viable and successful
product development.
To solve this challenge, we will use synthetic biology approaches to modify key growth regulatory pathways to
improve manufacturability of our promising L. lactis platform. L. lactis adapts to environmental circumstances to
survive. In a bioreactor setting, L. lactis has a controlled metabolism that permits the utilization of certain type
of sugars. When under stress, and event that typically occurs at late stage of fermentation, L. lactis switches to
an aerobic metabolism, which is detrimental to the bacteria survival. In this application, we proposed to
engineer a new L. lactis chassis with improved metabolic and respiration capacities to augment and improve
bacterial fermentation and cellular biomass.
项目概要
口服基于蛋白质的药物(“生物制剂”)将极大地改善和简化我们的治疗方法和
预防疾病1-4。然而,口服生物制剂的稳定性低且半衰期短。
通过细菌口服生物制剂,并对肠道的腐蚀性条件敏感5-7。
与传统的药物输送系统相比,细菌可以克服这些障碍。
生物制品原位生产的优势、靶向能力以及对不同有效载荷的适应性。
利用肠道微生物组-宿主免疫细胞的相互缠绕,细菌传递治疗剂也可以导致
宿主免疫反应的调节8-10 Rise Therapeutics 率先开发了新型药物。
益生菌乳酸乳球菌的重组菌株展示了巨大的概念验证
在超过 15 种动物模型中,我们的重组益生菌口服给药能够实现。
有针对性地参与免疫系统的特定受体,以重新平衡宿主的免疫库。
在我们内部 GMP 生产基础设施的支持下,这些重组菌株现已进入
人体临床测试。
乳酸乳球菌 (L.) 是用于生物制品递送的最有前途的细菌平台之一。
致病性、GRAS 指定的革兰氏阳性细菌,对人类具有非凡的安全性,
除了口服递送外,还包括以转基因形式递送治疗性蛋白质。
生物制品、微生物系统是重组蛋白工业生产的标志11。
乳酸菌也被用来表达工业应用的异源蛋白质,而大肠杆菌是其中的代表。
金标准,革兰氏阳性细菌,如乳酸乳球菌,由于纯化更加简单而受到关注
革兰氏阴性菌株 12、13 不支持的过程和重要蛋白质生化途径。
然而,乳酸乳球菌平台受到制造限制,细胞生物反应器密度远未达到最高水平。
低于某些商业目的的水平需要此限制增加商品成本,阻碍使用。
人类中的剂量更高,并限制其在工业蛋白质表达应用中的使用。
纯净且稳定的重组细菌的密度对于实现商业可行性和成功至关重要
产品开发。
为了解决这一挑战,我们将使用合成生物学方法来修改关键的生长调控途径
提高我们有前途的乳酸乳球菌平台的可制造性,乳酸乳球菌适应环境条件。
在生物反应器环境中,乳酸乳球菌具有受控的代谢,允许利用某些类型。
当处于压力下并且通常发生在发酵后期时,乳酸乳球菌会转变为糖。
有氧代谢,这会损害细菌的生存。在此应用中,我们建议
设计了一种新的乳酸菌底盘,具有改进的代谢和呼吸能力,以增强和改善
细菌生物质发酵。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christian Furlan Freguia其他文献
Christian Furlan Freguia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
莱姆关节炎中关节细胞因子微环境失调的机制及雪胆甲素的调节作用研究
- 批准号:81860644
- 批准年份:2018
- 资助金额:32.0 万元
- 项目类别:地区科学基金项目
基于尿酸盐和三磷酸腺苷协同刺激痛风性关节炎发病新机制的动物模型构建和评估
- 批准号:81771774
- 批准年份:2017
- 资助金额:79.0 万元
- 项目类别:面上项目
类风湿关节炎的iNKT细胞免疫治疗及其机制研究
- 批准号:81771755
- 批准年份:2017
- 资助金额:55.0 万元
- 项目类别:面上项目
一种新型类风湿关节炎中医寒痹与热痹动物模型的研究
- 批准号:81673723
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:面上项目
咬合异常致颞颌关节骨关节炎动物模型的创建及其软骨退变的细胞与分子机理研究
- 批准号:81530033
- 批准年份:2015
- 资助金额:274.0 万元
- 项目类别:重点项目
相似海外基金
On Demand Dissoluble Supramolecular Hydrogels: Towards Pain Free Burn Dressings
按需可溶性超分子水凝胶:迈向无痛烧伤敷料
- 批准号:
10658220 - 财政年份:2023
- 资助金额:
$ 28.25万 - 项目类别:
Developing microwave epiphysiodesis to correct limb length discrepancies
开发微波骨骺固定术以纠正肢体长度差异
- 批准号:
10804031 - 财政年份:2023
- 资助金额:
$ 28.25万 - 项目类别:
Novel Methods of Chemo-sensitizing Low-proliferative Disseminated Tumor Cells in Triple Negative Breast Cancer
三阴性乳腺癌中低增殖性播散性肿瘤细胞化疗增敏的新方法
- 批准号:
9887288 - 财政年份:2020
- 资助金额:
$ 28.25万 - 项目类别: