Comparative systems biology of apicomplexan cell division

顶端复合体细胞分裂的比较系统生物学

基本信息

  • 批准号:
    10539938
  • 负责人:
  • 金额:
    $ 141.38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-21 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

Summary Apicomplexan parasites have major impacts on human health e.g. Plasmodium falciparum causes malaria whereas Toxoplasma gondii and Babesia spp. cause opportunistic infections. Although this close-knit group shares their obligate intracellular life styles, they display a wide variety of asexual cell division modes. These differ between parasites as well as between different life stages within a single parasite species, but the start- and end-point is always a host cell invasion competent ‘zoite’. The number of zoites made per division round varies dramatically (from 2-90,000) and can unfold in several different ways by reshuffling the functional modules of 1) mother cytoskeleton disassembly, 2) DNA synthesis and chromosome segregation (D&S), 3) karyokinesis, and 4) zoite assembly (budding). Distinct cell division modes across Apicomplexa arise from variations in the order and sequence of the modules as well as the number of module repetitions. In the current model, cell division progresses in transcriptional waves mediated transcription factors that act on target genes that in turn bundle into the functional modules. However, little is known of the composition, regulators and wiring of the different modules, and how this leads to the diversity of cell division modes in Apicomplexa. The research team hypothesizes that these questions can be answered by a comparative systems biology approach, starting with parasites representing different diverse and ‘exotic’ division cell division modes wherein particular modules are amplified, or combined differently: Babesia divergens binary fission, P. falciparum schizogony, Sarcocystis neurona endopolygeny without karyokinesis, T. gondii asexual endodyogeny and T. gondii pre-sexual endopolygeny with karyokinesis in the definitive host. This approach takes advantage of the single cell sequencing revolution combined with computational network analysis approaches. Firstly, single cell transcriptomic and epigenomic maps of the five cell division modes will be generated and analyzed to define the effectors contained in each specific module. A subset of uncharacterized effectors in the poorly characterized karyokinesis and cytoskeleton disassembly modules will be experimentally validated by gene knock-downs. Secondly, chemical and genetic perturbations combined with single cell sequencing will enable the assembly of causal gene regulatory networks (GRNs) across all division modes. Candidate module controllers in these GRNs will be validated by reprogramming and/or genetic perturbation experiments: changing (parts of) the division mode in specific parasites. This work will answer elusive questions regarding apicomplexan specific biology within barely studied functional modules, as well as how apicomplexan cell division flexibility is wired. Thirdly, the proposed work will produce extensive community resources comprising single expression and chromatin accessibility atlases across five different cell division modes and parasite species. Moreover, data sets will be searchable across systems in real time for any biological feature of interest by web-based Apps that will be incorporated in VEuPathDB and enable querying the data for biological questions beyond cell division.
概括 顶复门寄生虫对人类健康有重大影响,例如恶性疟原虫引起疟疾 而弓形虫和巴贝虫属会引起机会性感染,尽管这是一个紧密结合的群体。 它们具有专性细胞内生活方式,表现出多种无性细胞分裂模式。 寄生虫之间以及单一寄生虫物种内不同生命阶段之间的差异是不同的,但起始 终点始终是具有宿主细胞侵袭能力的“孢子”,每轮分裂产生的孢子数量。 变化很大(从 2 到 90,000),并且可以通过重新洗牌功能模块以几种不同的方式展开 1) 母细胞骨架拆卸,2) DNA 合成和染色体分离 (D&S),3) 核分裂, 4) 孢子组装(出芽) 顶复门的不同细胞分裂模式源于不同的细胞分裂模式。 当前模型、单元中模块的顺序和顺序以及模块重复的数量。 分裂在转录波介导的转录因子中进行,这些转录因子作用于靶基因,进而作用于靶基因 然而,人们对它的组成、调节器和接线知之甚少。 不同的模块,以及这如何导致 Apicomplexa 细胞分裂模式的多样性。 发现这些问题可以通过比较系统生物学方法来回答,首先 代表不同的多样化和“异国情调”分裂细胞分裂模式的寄生虫,其中特定模块 放大或以不同方式组合:分歧巴贝斯虫二元裂变、恶性疟原虫分裂生殖、肉孢子虫 无核分裂的神经元内多发生、弓形虫无性内生和弓形虫前性 终宿主中具有核分裂的内多发生这种方法利用了单细胞的优势。 测序革命与计算网络分析方法相结合首先,单细胞。 将生成并分析五种细胞分裂模式的转录组和表观基因组图谱,以定义 每个特定模块中包含的未表征效应器的子集。 核分裂和细胞骨架拆卸模块将通过基因敲除进行实验验证。 其次,将化学和遗传扰动与单细胞测序相结合将能够组装 跨所有分裂模式的因果基因调控网络(GRN)这些GRN中的候选模块控制器。 将通过重新编程和/或遗传扰动实验来验证:改变(部分)分裂 这项工作将回答有关 apicomplexan 特定生物学的难以捉摸的问题。 在几乎没有研究过的功能模块中,以及apicomplexan细胞分裂的灵活性是如何连接的。 拟议的工作将产生广泛的社区资源,包括单一表达和染色质 此外,数据集将是五种不同细胞分裂模式和寄生虫物种的可访问性图集。 可通过基于网络的应用程序跨系统实时搜索任何感兴趣的生物特征 合并到 VEuPathDB 中,并能够查询数据以了解细胞分裂之外的生物学问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Manoj T Duraisingh其他文献

Manoj T Duraisingh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Manoj T Duraisingh', 18)}}的其他基金

Malaria parasite determinants of host cell tropism
疟疾寄生虫宿主细胞趋向性的决定因素
  • 批准号:
    10646370
  • 财政年份:
    2022
  • 资助金额:
    $ 141.38万
  • 项目类别:
Evaluating host-directed therapeutics against blood-stage malaria parasites
评估针对血期疟疾寄生虫的宿主导向疗法
  • 批准号:
    10665779
  • 财政年份:
    2022
  • 资助金额:
    $ 141.38万
  • 项目类别:
Linking metabolite sensing and gene expression in malaria parasites
将疟疾寄生虫的代谢物传感和基因表达联系起来
  • 批准号:
    10593642
  • 财政年份:
    2022
  • 资助金额:
    $ 141.38万
  • 项目类别:
Evaluating host-directed therapeutics against blood-stage malaria parasites
评估针对血期疟疾寄生虫的宿主导向疗法
  • 批准号:
    10528133
  • 财政年份:
    2022
  • 资助金额:
    $ 141.38万
  • 项目类别:
Malaria parasite determinants of host cell tropism
疟疾寄生虫宿主细胞趋向性的决定因素
  • 批准号:
    10522253
  • 财政年份:
    2022
  • 资助金额:
    $ 141.38万
  • 项目类别:
Molecular basis of antimalarial drug resistance in Plasmodium vivax
间日疟原虫抗疟药物耐药性的分子基础
  • 批准号:
    10593992
  • 财政年份:
    2022
  • 资助金额:
    $ 141.38万
  • 项目类别:
Developing a barcoded malaria parasite panel to assess broadly neutralizing antibodies
开发带条形码的疟原虫面板来评估广泛中和抗体
  • 批准号:
    10655645
  • 财政年份:
    2022
  • 资助金额:
    $ 141.38万
  • 项目类别:
Developing a barcoded malaria parasite panel to assess broadly neutralizing antibodies
开发带条形码的疟原虫面板来评估广泛中和抗体
  • 批准号:
    10511052
  • 财政年份:
    2022
  • 资助金额:
    $ 141.38万
  • 项目类别:
Comparative systems biology of apicomplexan cell division
顶端复合体细胞分裂的比较系统生物学
  • 批准号:
    10669790
  • 财政年份:
    2022
  • 资助金额:
    $ 141.38万
  • 项目类别:
Developing comparative chemical genomics and genetic validation tools for Babesia spp.
开发巴贝虫属的比较化学基因组学和遗传验证工具。
  • 批准号:
    10042448
  • 财政年份:
    2020
  • 资助金额:
    $ 141.38万
  • 项目类别:

相似海外基金

The functional role of photosynthesis-related genes in non-photosynthetic symbionts of corals
光合作用相关基因在珊瑚非光合作用共生体中的功能作用
  • 批准号:
    22KF0361
  • 财政年份:
    2023
  • 资助金额:
    $ 141.38万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Deciphering the composite S-phase in Toxoplasma gondii
解读弓形虫复合 S 期
  • 批准号:
    10744528
  • 财政年份:
    2023
  • 资助金额:
    $ 141.38万
  • 项目类别:
Ribosome structure determination from Apicomplexan parasites
顶复门寄生虫的核糖体结构测定
  • 批准号:
    10726704
  • 财政年份:
    2023
  • 资助金额:
    $ 141.38万
  • 项目类别:
Host cell membrane perforation during invasion by Toxoplasma gondii
弓形虫入侵过程中宿主细胞膜穿孔
  • 批准号:
    10587658
  • 财政年份:
    2023
  • 资助金额:
    $ 141.38万
  • 项目类别:
The unconventional Ark3 cluster in Toxoplasma gondii
弓形虫中非常规的 Ark3 簇
  • 批准号:
    10511468
  • 财政年份:
    2022
  • 资助金额:
    $ 141.38万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了