The role of HrpA in ribosome-associated quality control in E. coli
HrpA 在大肠杆菌核糖体相关质量控制中的作用
基本信息
- 批准号:10537191
- 负责人:
- 金额:$ 4.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:ATP phosphohydrolaseAffectAntibiotic ResistanceAntibiotic TherapyAntibioticsBacteriaBindingBiochemicalBiological AssayBorrelia burgdorferiCellsDependenceDevelopmentEscherichia coliEscherichia coli ProteinsFamilyFutureGrowthHumanHydrolysisHypersensitivityIn VitroLyme DiseaseMammalian CellMessenger RNAModificationMusMutation AnalysisOrthologous GenePathogenicityPathway interactionsPeptidesPharmaceutical PreparationsPlayPolyribosomesPositioning AttributePredispositionProcessProteinsProteobacteriaQuality ControlRNARNA HelicaseReporterResourcesRibosome InactivationRibosomesRoleSaccharomyces cerevisiaeSedimentation processSiteStressSucroseSystemTechniquesTestingTranslationsYeastsantimicrobialbasedensityendonucleaseexperimental studyfitnessgenome-widehuman diseasein vivoinsightnovelpathogenic bacteriapeptidyl-tRNAprematurerecruitribosome profilingtmRNAtranscriptometranscriptome sequencingtransmission process
项目摘要
Project Summary/Abstract
Elongating ribosomes frequently encounter obstacles that cause ribosomes to stall. Stalled ribosomes
are then targeted by rescue factors to recycle the ribosomal subunits and target the faulty mRNA and nascent
peptide for decay. This process is critical for cellular fitness in bacteria: its loss often results in decreased
pathogenicity, viability, or antibiotic resistance. In E. coli, ribosome stalling leads to collisions, which recruit the
endonuclease SmrB to cleave the mRNA between collided ribosomes. These ribosomes are then targeted by
the rescue factor tmRNA. Several lines of evidence suggest E. coli employ a second pathway to split antibiotic-
inhibited ribosomes into subunits; however, a ribosome-splitting factor has yet to be identified. The DExH-box
RNA helicase HrpA decreases E. coli sensitivity to ribosome-targeting antibiotics, suggesting this protein has a
ribosome-associated function in antibiotic resistance. In fact, HrpA has been shown to rescue ribosomes stalled
on reporter mRNA and resolve global antibiotic-induced ribosome collisions, indicating that it plays a role in
clearing stacked ribosomes during translational stress. The proposed experiments will explore whether HrpA is
a novel ribosome rescue factor that splits stalled ribosomes. Because ribosome collisions are critical for ribosome
rescue in yeast, mammalian cells, and E. coli, Aim 1 will determine if ribosome collisions also recruit HrpA.
Protein readout from a reporter-based assay in wild-type and ΔhrpA cells will be used to test if HrpA rescues
collided ribosomes from mRNA. To determine if HrpA preferentially associates with collided ribosomes in vivo,
sucrose density gradients will be used to determine if HrpA sediments with ribosome subunits, single ribosomes,
or collided polysomes from cell lysates that are treated with ribosome-stalling antibiotics. Finally, the impact of
HrpA on ribosome position and ribosome collisions transcriptome-wide will be explored using ribosome profiling
in antibiotic-treated wild-type and ΔhrpA cells. Two S. cerevisiae RNA helicases in the same DExH-box family
as HrpA are involved in ribosome splitting; therefore, Aim 2 will determine if HrpA similarly splits stalled
ribosomes in E. coli. Because the protein Hsp15 preferentially associates with 50S ribosomal subunits from
prematurely split ribosomes, HrpA splitting activity will be assayed in vivo by examining Hsp15 sedimentation in
sucrose density gradients in antibiotic-treated wild-type and ΔhrpA cells. Finally, HrpA will be tested for its ability
to split stalled ribosomes into subunits using an in vitro biochemical assay with purified components analyzed in
sucrose density gradients. This assay will be used to determine ATPase activity and precise substrate
recognition of HrpA. Characterization of HrpA will provide valuable insight into how E. coli mitigate the effects of
ribosome-targeting antibiotics, marking it as a promising potential target of antimicrobial compounds in the
treatment of human disease.
项目概要/摘要
延长核糖体经常遇到导致核糖体停滞的障碍。
然后被救援因子靶向回收核糖体亚基并靶向有缺陷的 mRNA 和新生
这个过程对于细菌的细胞适应性至关重要:它的损失通常会导致细菌的细胞适应性下降。
在大肠杆菌中,核糖体停滞会导致碰撞,从而招募
核酸内切酶 SmrB 在碰撞的核糖体之间切割 mRNA,然后这些核糖体被靶向。
多种证据表明大肠杆菌采用第二种途径来分解抗生素-
抑制核糖体形成亚基;然而,核糖体分裂因子尚未确定。
RNA 解旋酶 HrpA 降低大肠杆菌对核糖体靶向抗生素的敏感性,表明该蛋白具有
抗生素耐药性中的核糖体相关功能 事实上,HrpA 已被证明可以挽救停滞的核糖体。
报告基因 mRNA 并解决全局抗生素诱导的核糖体碰撞,表明它在
所提出的实验将探索 HrpA 是否在翻译应激过程中清除堆积的核糖体。
一种新颖的核糖体救援因子,可以分裂停滞的核糖体,因为核糖体碰撞对于核糖体至关重要。
为了拯救酵母、哺乳动物细胞和大肠杆菌,目标 1 将确定核糖体碰撞是否也招募 HrpA。
野生型和 ΔhrpA 细胞中基于报告基因的测定中的蛋白质读数将用于测试 HrpA 是否可以拯救
为了确定 HrpA 是否优先与体内的碰撞核糖体结合,
蔗糖密度梯度将用于确定 HrpA 是否与核糖体亚基、单个核糖体、
或来自用核糖体停滞抗生素处理的细胞裂解物的碰撞多核糖体最后,影响。
将使用核糖体分析来探索转录组范围内核糖体位置和核糖体碰撞的 HrpA
在抗生素处理的野生型和 ΔhrpA 细胞中,同一 DExH-box 家族中的两个酿酒酵母 RNA 解旋酶。
由于 HrpA 参与核糖体分裂;因此,目标 2 将确定 Hrp A 分裂是否停滞;
大肠杆菌中的核糖体 因为蛋白质 Hsp15 优先与来自大肠杆菌的 50S 核糖体亚基结合。
过早分裂核糖体,HrpA 分裂活性将通过检查 Hsp15 沉降在体内进行测定
抗生素处理的野生型和 ΔhrpA 细胞中的蔗糖密度梯度最后,将测试 HrpA 的能力。
使用体外生化测定将核糖体停滞为亚基,并在其中分析纯化成分
该测定将用于测定 ATP 酶活性和精确底物。
HrpA 的识别将为大肠杆菌如何减轻影响提供有价值的见解。
核糖体靶向抗生素,使其成为抗菌化合物的一个有前途的潜在靶点
治疗人类疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Annabelle Campbell其他文献
Annabelle Campbell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Annabelle Campbell', 18)}}的其他基金
The role of HrpA in ribosome-associated quality control in E. coli
HrpA 在大肠杆菌核糖体相关质量控制中的作用
- 批准号:
10738264 - 财政年份:2022
- 资助金额:
$ 4.04万 - 项目类别:
相似国自然基金
基于真菌的跨界群体感应干扰对水环境抗生素抗性基因传播的影响及调控研究
- 批准号:42307159
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
可溶态生物炭对抗生素抗性基因在水土环境中迁移与水平转移的影响及机制
- 批准号:42307468
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
熏蒸结合动物堆肥对土壤-蔬菜系统抗生素抗性基因的影响机制
- 批准号:42307033
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
人工补给对地下水抗生素抗性组与病原菌的影响及调控机制
- 批准号:42377392
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
典型非抗生素类药物对活性污泥多质粒介导下抗生素抗性基因水平转移的影响机制研究
- 批准号:42307529
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
N-terminal acylation and sorting of Helicobacter pylori lipoproteins and their role in host response to infection
幽门螺杆菌脂蛋白的 N 末端酰化和分选及其在宿主感染反应中的作用
- 批准号:
10584620 - 财政年份:2022
- 资助金额:
$ 4.04万 - 项目类别:
The role of HrpA in ribosome-associated quality control in E. coli
HrpA 在大肠杆菌核糖体相关质量控制中的作用
- 批准号:
10738264 - 财政年份:2022
- 资助金额:
$ 4.04万 - 项目类别:
N-terminal acylation and sorting of Helicobacter pylori lipoproteins and their role in host response to infection
幽门螺杆菌脂蛋白的 N 末端酰化和分选及其在宿主感染反应中的作用
- 批准号:
10447879 - 财政年份:2022
- 资助金额:
$ 4.04万 - 项目类别:
Creation and Repair of Postreplicative DNA Gaps
复制后 DNA 缺口的产生和修复
- 批准号:
10614989 - 财政年份:2019
- 资助金额:
$ 4.04万 - 项目类别:
Creation and Repair of Postreplicative DNA Gaps
复制后 DNA 缺口的产生和修复
- 批准号:
10400046 - 财政年份:2019
- 资助金额:
$ 4.04万 - 项目类别: