Human Microbiome Compendium: large-scale curation and processing of human microbiome datasets
人类微生物组纲要:人类微生物组数据集的大规模管理和处理
基本信息
- 批准号:10538341
- 负责人:
- 金额:$ 36.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAnimal ModelAutomated AnnotationBiologicalBiological MarkersClassificationCodeCollectionComplexDataData SetDatabasesDescriptorDevelopmentDimensionsDiseaseEnvironmentEtiologyGenerationsGenomicsHealthHumanHuman MicrobiomeHuman bodyIndividualInternetInterviewLinkMachine LearningMeta-AnalysisMetadataMetagenomicsMethodsModelingNoiseOntologyOutputPathway interactionsPatternPlayProcessPublishingResearch PersonnelResourcesRibosomal RNARunningSample SizeSamplingSequence Read ArchiveShotgunsSignal TransductionSiteStandardizationSupercomputingSystemTechniquesTherapeuticTimeTrainingVariantVisualizationVisualization softwareWidthWritingbasebioinformatics toolcommunity livingdata toolsdisease diagnosisfallsfecal microbiomeimprovedinsightmachine learning modelmetagenomic sequencingmicrobialmicrobial communitymicrobiomemicrobiome analysismicrobiome researchmicrobiotanovelnovel therapeutic interventionsample collectiontooltraitweb appweb services
项目摘要
ABSTRACT
Mounting evidence shows the microbial communities living in (and on) the human body play a key role in the
etiology of disease. A major obstacle in the field is the dearth of reliable methods for extracting meaningful signals
from small, noisy, intercorrelated, and highly variable microbiome datasets. Enhancing the ability of researchers
to generate robust characterizations of the complex relationship between microbiota and their hosts will support
novel, more reliable diagnosis of disease and bring the field one step closer to finding the causal links underlying
microbiome-based therapeutics. Until now, however, researchers have not had the huge volume of data required
to draw these conclusions. Although microbiome data from hundreds of thousands of samples is available in the
NCBI Sequence Read Archive (SRA), these datasets have not been leveraged at a large scale. To bridge this
gap, we will build an automated pipeline to process and aggregate more than 750,000 samples of amplicon and
shotgun metagenomics sequencing data from all publicly available human microbiome samples. We will build a
platform, which we call "The Human Microbiome Compendium," for compiling collections of relevant samples
that can be used by researchers to find ecological dynamics that have until now been hidden in the noise. The
compendium will allow users to see relative abundances of microbial taxa in every sample, which will also be
linked to NCBI metadata and annotations generated by a new tool that imputes a uniform set of descriptors for
sample type, body site, and host traits. We will also use the compendium to train machine learning models for
dimensionality reduction, which will improve the power of independent microbiome studies by incorporating
insights from the compendium's collection of hundreds of thousands of samples. These data and tools will be
distributed across multiple channels, including a web application where users will be able to upload data to be
processed in real time by the dimensionality reduction tools. The proposed studies will generate the first
comprehensive aggregation of the microbiome datasets available via the SRA, which will be used to provide
characterizations of the human microbiome in unprecedented detail. The resulting compendium will encourage
the use of publicly available data and inform new microbiome analysis tools that will help extract important
associations in studies where it's impractical to acquire the sample sizes required by conventional techniques.
Results from this study will be a starting point to identification of microbiome biomarkers for disease and the
development of novel therapeutic approaches.
抽象的
越来越多的证据表明,生活在人体内(和体表)的微生物群落在
疾病的病因学。该领域的一个主要障碍是缺乏提取有意义信号的可靠方法
来自小型、嘈杂、相互关联且高度可变的微生物组数据集。增强研究人员的能力
生成微生物群与其宿主之间复杂关系的可靠表征将支持
新颖、更可靠的疾病诊断,使该领域更接近寻找潜在的因果关系
基于微生物组的疗法。然而,到目前为止,研究人员还没有获得所需的大量数据。
得出这些结论。尽管来自数十万个样本的微生物组数据可在
NCBI 序列读取存档 (SRA),这些数据集尚未得到大规模利用。为了弥补这一点
差距,我们将建立一个自动化管道来处理和聚合超过 750,000 个扩增子样本
来自所有公开可用的人类微生物组样本的鸟枪法宏基因组测序数据。我们将建立一个
我们称之为“人类微生物组纲要”的平台,用于编译相关样本的集合
研究人员可以利用它来寻找迄今为止隐藏在噪音中的生态动态。这
纲要将允许用户看到每个样本中微生物类群的相对丰度,这也将是
链接到由新工具生成的 NCBI 元数据和注释,该工具可估算一组统一的描述符
样本类型、身体部位和宿主特征。我们还将使用该纲要来训练机器学习模型
降维,这将通过整合来提高独立微生物组研究的能力
来自该纲要收集的数十万个样本的见解。这些数据和工具将
分布在多个渠道,包括一个网络应用程序,用户可以在其中上传数据
由降维工具实时处理。拟议的研究将产生第一个
通过 SRA 提供的微生物组数据集的全面汇总,该数据集将用于提供
以前所未有的细节描述人类微生物组的特征。由此产生的纲要将鼓励
使用公开数据并为新的微生物组分析工具提供信息,这将有助于提取重要的
无法通过传统技术获得所需样本量的研究中的关联。
这项研究的结果将成为鉴定疾病和疾病的微生物组生物标志物的起点。
开发新的治疗方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ran Blekhman其他文献
Ran Blekhman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ran Blekhman', 18)}}的其他基金
Milk-Omics: Systems Biology of Human Milk and Its Links to Maternal and Infant Health
乳汁组学:母乳的系统生物学及其与母婴健康的联系
- 批准号:
10531465 - 财政年份:2022
- 资助金额:
$ 36.85万 - 项目类别:
Milk-Omics: Systems Biology of Human Milk and Its Links to Maternal and Infant Health
乳汁组学:母乳的系统生物学及其与母婴健康的联系
- 批准号:
10709555 - 财政年份:2022
- 资助金额:
$ 36.85万 - 项目类别:
Population Genomics of Host-Microbiome Interactions
宿主-微生物组相互作用的群体基因组学
- 批准号:
10679265 - 财政年份:2022
- 资助金额:
$ 36.85万 - 项目类别:
Human Microbiome Compendium: large-scale curation and processing of human microbiome datasets
人类微生物组纲要:人类微生物组数据集的大规模管理和处理
- 批准号:
10701823 - 财政年份:2022
- 资助金额:
$ 36.85万 - 项目类别:
Population Genomics of Host-Microbiome Interactions
宿主-微生物组相互作用的群体基因组学
- 批准号:
10227036 - 财政年份:2018
- 资助金额:
$ 36.85万 - 项目类别:
Population Genomics of Host-Microbiome Interactions
宿主-微生物组相互作用的群体基因组学
- 批准号:
9753291 - 财政年份:2018
- 资助金额:
$ 36.85万 - 项目类别:
Population Genomics of Host-Microbiome Interactions
宿主-微生物组相互作用的群体基因组学
- 批准号:
10289962 - 财政年份:2018
- 资助金额:
$ 36.85万 - 项目类别:
Population Genomics of Host-Microbiome Interactions
宿主-微生物组相互作用的群体基因组学
- 批准号:
10449442 - 财政年份:2018
- 资助金额:
$ 36.85万 - 项目类别:
Population Genomics of Host-Microbiome Interactions
宿主-微生物组相互作用的群体基因组学
- 批准号:
10622273 - 财政年份:2018
- 资助金额:
$ 36.85万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于中医经典名方干预效应差异的非酒精性脂肪性肝病动物模型证候判别研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
利用肝癌动物模型开展化学可控的在体基因编辑体系的研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
雌激素抑制髓系白血病动物模型中粒细胞异常增生的机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
无菌动物模型与单细胞拉曼技术结合的猴与人自闭症靶标菌筛选及其机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Long-read assembly and annotation of rat genomes that are important models of complex genetic disease
大鼠基因组的长读组装和注释是复杂遗传疾病的重要模型
- 批准号:
10449388 - 财政年份:2021
- 资助金额:
$ 36.85万 - 项目类别:
Long-read assembly and annotation of rat genomes that are important models of complex genetic disease
大鼠基因组的长读组装和注释是复杂遗传疾病的重要模型
- 批准号:
10211748 - 财政年份:2021
- 资助金额:
$ 36.85万 - 项目类别:
Long-read assembly and annotation of rat genomes that are important models of complex genetic disease
大鼠基因组的长读组装和注释是复杂遗传疾病的重要模型
- 批准号:
10615135 - 财政年份:2021
- 资助金额:
$ 36.85万 - 项目类别:
Parallelized Imaging and Automated Analysis of Zebrafish Assays with a Gigapixel Microscope
使用十亿像素显微镜对斑马鱼进行并行成像和自动分析
- 批准号:
10413246 - 财政年份:2017
- 资助金额:
$ 36.85万 - 项目类别:
Parallelized Imaging and Automated Analysis of Zebrafish Assays with a Gigapixel Microscope
使用十亿像素显微镜对斑马鱼进行并行成像和自动分析
- 批准号:
10258054 - 财政年份:2017
- 资助金额:
$ 36.85万 - 项目类别: