Oncogenic Kras drives stromal adipogenesis to promote colorectal cancer (CRC) progression
致癌 Kras 驱动基质脂肪生成,促进结直肠癌 (CRC) 进展
基本信息
- 批准号:10528562
- 负责人:
- 金额:$ 4.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdipocytesAllelesAutomobile DrivingBiologicalBiological AssayBypassCXCL3 geneCancer ModelCarcinomaCatalogsCell Culture TechniquesCell Cycle ProgressionCell LineCellsChromosomal InstabilityClinicCoculture TechniquesColorectal CancerCytokine GeneDNA Sequence AlterationDataData SetDevelopmentDiagnosisDiseaseDisease ProgressionDropsEmbryoEngineeringEventFibroblastsFunctional disorderGene ExpressionGene set enrichment analysisGenesGeneticGenomic InstabilityGenomicsGoalsHistologicHumanHuman EngineeringImmuneImpairmentKRAS oncogenesisKRAS2 geneKRASG12DLeadLipidsMaintenanceMalignant - descriptorMalignant NeoplasmsMediatingMetastatic Neoplasm to the BoneMetastatic toMinorityModelingMolecularMusMutationMyelogenousMyeloid-derived suppressor cellsNatureNeoplasm MetastasisOncogenesOncogenicOutcomePathway interactionsPatientsPhasePhenotypePublic HealthRNA-Directed DNA PolymeraseRecurrenceReporterResearchResearch Project GrantsRoleSignal TransductionStromal CellsSurveysSurvival RateTP53 geneTelomeraseThe Cancer Genome AtlasTrainingTransforming Growth Factor betaTransgenesTumor BiologyTumor ImmunityWorkadvanced diseaseangiogenesisbasecancer cellcell typecolon cancer patientscolorectal cancer metastasiscolorectal cancer progressionconditional knockoutcytokinedesigngenomic aberrationsin silicoin vivolipid biosynthesislymph nodesmetastatic colorectalmetastatic processmouse modelnew therapeutic targetnovelpreventpromoterprostate cancer modelrecruitsingle-cell RNA sequencingtargeted treatmenttelomeretherapeutic targettraittranscription factortumortumor microenvironmenttumor progressiontumorigenesis
项目摘要
Project Summary
While the 5-year survival rate for colorectal cancer (CRC) patients with localized stage disease (as defined
by SEER) is 90%, this survival rate drops to 14% for patients diagnosed with metastatic CRC. Thus, there is an
urgent need to define the mechanisms governing progression to advanced disease and its maintenance.
Human CRCs harboring oncogenic mutations in the KRAS oncogene (designated hereafter as KRAS*) are
25% more likely to develop metastases. Similarly, our CRC mouse model, engineered with an inducible KRAS*
transgene and conditional null alleles of APC and p53 alleles (iKAP), has revealed a role for KRAS* in driving
cancer progression and metastasis. Mechanistically, KRAS*-driven cancer metastasis functions in part by
activating cancer cell-intrinsic TGFβ signaling and suppressing anti-tumoral immunity via the IRF2-CXCL3 axis
which recruits myeloid derived suppressor cells. Unfortunately, emerging therapies targeting either KRAS* or
TGFβ pathways have shown limited efficacy in the clinic, motivating us to identify and validate additional
KRAS*-driven cancer progression mechanisms with the goal of expanding the repertoire of therapeutic targets
for metastatic CRC. Utilizing the iKAP model, functional gene set enrichment and histological analyses of
KRAS*-expressing CRC metastases revealed a strong adipogenesis signature and preponderance of
lipofibroblasts and angiogenesis in the tumor microenvironment. Correspondingly, co-culture of mouse
embryonic fibroblasts with conditioned media from iKAP primary cell lines stimulated their differentiation into
cells with adipocyte and fibroblast traits, i.e., “lipofibroblasts.” In the F99 phase of this proposal, I seek to define
the molecular mechanisms by which KRAS*-expressing cancer cells drive lipofibrogenesis and to understand the
tumor biological role of lipofibroblasts in KRAS*-driven CRC progression.
As only a minority of human or mouse KRAS* CRC cases progress to metastatic disease, clearly genetic
events beyond KRAS activation drive metastases. For example, patients with or without KRAS* mutation both
show around a 40% lymph node metastatic rate. The study of such pro-metastasis events would be greatly
facilitated by incorporating an inducible telomerase reverse transcriptase (LSL-mTERT) into our existing iAP
model, thus modeling telomere-based crisis and genome instability followed by telomerase reactivation. In our
telomerase-inducible mouse models of prostate cancer, crisis-telomerase sequence generates cancer-relevant
genomic aberrations and increases metastatic potential. Although incorporation of genomic instability into the
iAP model would not create a more human-like model, it would provide a platform to identify amplifications and
deletions associated with the metastatic process. In the K00 phase of this proposal, I seek to engineer human-
like telomere dynamics in the iAP model to assess the impact of telomere-based crisis and telomerase
reactivation in driving metastasis and to survey the genomic alterations that may underlie the metastatic process.
Such efforts may facilitate the discovery of new therapeutic targets for advanced CRC disease.
项目概要
而局部期疾病(定义为结直肠癌)患者的 5 年生存率
SEER)为 90%,对于诊断为转移性 CRC 的患者,生存率下降至 14%。
迫切需要确定晚期疾病进展及其维持的机制。
携带 KRAS 癌基因(以下称为 KRAS*)致癌突变的人类 CRC
同样,我们的 CRC 小鼠模型采用诱导型 KRAS* 设计,发生转移的可能性增加了 25%。
APC 和 p53 等位基因 (iKAP) 的转基因和条件无效等位基因 (iKAP) 揭示了 KRAS* 在驱动中的作用
从机制上讲,KRAS* 驱动的癌症转移部分通过
通过 IRF2-CXCL3 轴激活癌细胞固有的 TGFβ 信号传导并抑制抗肿瘤免疫
不幸的是,针对 KRAS* 或的新兴疗法。
TGFβ 途径在临床中显示出有限的功效,这促使我们识别和验证其他途径
KRAS* 驱动的癌症进展机制,旨在扩大治疗靶点
利用 iKAP 模型、功能基因集富集和组织学分析进行转移性 CRC。
表达 KRAS* 的 CRC 转移瘤显示出强烈的脂肪生成特征和优势
相应地,小鼠共培养肿瘤微环境中的脂肪成纤维细胞和血管生成。
使用来自 iKAP 原代细胞系的条件培养基刺激胚胎成纤维细胞分化为
具有脂肪细胞和成纤维细胞特征的细胞,即“脂肪成纤维细胞”。在该提案的 F99 阶段,我试图定义
表达 KRAS* 的癌细胞驱动脂肪纤维生成的分子机制并了解
脂肪成纤维细胞在 KRAS* 驱动的 CRC 进展中的肿瘤生物学作用。
由于只有少数人类或小鼠 KRAS* CRC 病例进展为转移性疾病,显然遗传因素
KRAS 激活以外的事件会导致转移,例如,患有或不患有 KRAS* 突变的患者。
显示大约 40% 的淋巴结转移率。对此类促转移事件的研究将具有重大意义。
通过将诱导型端粒酶逆转录酶 (LSL-mTERT) 整合到我们现有的 iAP 中来促进
模型,从而模拟基于端粒的危机和基因组不稳定性,然后是端粒酶重新激活。
端粒酶诱导的前列腺癌小鼠模型,危机端粒酶序列产生癌症相关的
尽管将基因组不稳定性纳入其中,但基因组畸变并增加了转移潜力。
iAP 模型不会创建一个更像人类的模型,它会提供一个平台来识别扩增和
在本提案的 K00 阶段,我寻求设计人类-
像 iAP 模型中的端粒动力学一样,评估基于端粒的危机和端粒酶的影响
重新激活驱动转移并调查可能构成转移过程的基因组改变。
这可能有助于发现晚期结直肠癌的新治疗目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wen-Hao Hsu其他文献
Wen-Hao Hsu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wen-Hao Hsu', 18)}}的其他基金
Oncogenic Kras drives stromal adipogenesis to promote colorectal cancer (CRC) progression
致癌 Kras 驱动基质脂肪生成,促进结直肠癌 (CRC) 进展
- 批准号:
10670996 - 财政年份:2022
- 资助金额:
$ 4.21万 - 项目类别:
相似国自然基金
成脂调节蛋白ADIRF上调KROX20/KLF4通道诱导异体脂肪脱细胞基质体内成脂的机制研究
- 批准号:82372544
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
肝细胞源MIF招募CD74+胰腺癌细胞介导非酒精性脂肪肝(NAFLD)驱动的胰腺癌肝转移的机制研究
- 批准号:82303933
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
骨骼肌来源的GDF15介导铁死亡调控脂肪细胞代谢重编程在线粒体病中的机制研究
- 批准号:82301590
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
膳食和红细胞膜脂肪酸水平及膜流动性与2型糖尿病发病风险的关联研究
- 批准号:82373564
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
肝细胞因子ORM2通过抑制Kupffer细胞激活改善非酒精性脂肪性肝炎的作用及机制研究
- 批准号:82300966
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
相似海外基金
Defining the role of Wnt11 and Wnt5a in regulating hematopoietic and skeletal stem cell self-renewal potential during homeostasis and stress
定义 Wnt11 和 Wnt5a 在稳态和应激过程中调节造血和骨骼干细胞自我更新潜力的作用
- 批准号:
10731650 - 财政年份:2023
- 资助金额:
$ 4.21万 - 项目类别:
Elucidating roles of microglial lipid droplets in neurodegeneration
阐明小胶质细胞脂滴在神经退行性变中的作用
- 批准号:
10605044 - 财政年份:2023
- 资助金额:
$ 4.21万 - 项目类别:
Hox-Regulated MSCs in Skeletal Development, Growth and Fracture Healing
Hox 调节的 MSC 在骨骼发育、生长和骨折愈合中的作用
- 批准号:
10566127 - 财政年份:2022
- 资助金额:
$ 4.21万 - 项目类别:
Hox-Regulated MSCs in Skeletal Development, Growth and Fracture Healing
Hox 调节的 MSC 在骨骼发育、生长和骨折愈合中的作用
- 批准号:
10662574 - 财政年份:2022
- 资助金额:
$ 4.21万 - 项目类别:
Elucidating extragonadal functions of follicle stimulating hormone using genetic approaches in mice
利用小鼠遗传方法阐明促卵泡激素的性腺外功能
- 批准号:
10534492 - 财政年份:2022
- 资助金额:
$ 4.21万 - 项目类别: