Enzyme-Powered Self-Propelled DNA Nanoparticles for Disruption and Antibiotic Delivery in Topical Biofilms
用于局部生物膜破坏和抗生素递送的酶驱动自驱动 DNA 纳米颗粒
基本信息
- 批准号:10528087
- 负责人:
- 金额:$ 18.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-06 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:Acidic RegionAnimal ModelAnti-Bacterial AgentsAntibiotic ResistanceAntibiotic TherapyAntibioticsAntigensAreaBacteriaBiologicalBiological AssayBiomassBladderBurn injuryBypassCaliberCeftazidimeCessation of lifeChemotaxisClinicalClinical TrialsComplexDNADNA MaintenanceData SetDependenceDestinationsDiffuseDiseaseEconomicsEnvironmentEnzymesExtracellular MatrixFibroblastsFluorescence SpectroscopyFoundationsFutureGastrointestinal DiseasesGelHealth Care CostsHumanHydrogen PeroxideHydrolaseImmune responseInfectionLeadLocationLocomotionMalignant NeoplasmsMalignant neoplasm of urinary bladderMeasuresMediatingMedical Care CostsMethodsMicrobial BiofilmsMicrobiologyModelingMucinsMusNanotechnologyNutrientOutputPatientsPatternPermeabilityPharmaceutical PreparationsPlatinumPolymersPseudomonas aeruginosaShapesSkinSpeedStomachStressTechnologyTestingTopical applicationTransmission Electron MicroscopyUncertaintyUreaUreaseUrineWorkantimicrobial drugbasebiomaterial compatibilitycombinatorialdesigndiabetic ulcerextracellularin vivoinnovationmouse modelmultidisciplinarynanoparticlenanoscaleopen woundpH gradientparticlepathogenquorum sensingremediationresponseskin lesionsuccesstargeted delivery
项目摘要
PROJECT SUMMARY/ABSTRACT
Bacterial biofilms are responsible for most human infections, causing tens of thousands of deaths and billions in
medical costs per year. Topical biofilms alone cause significant harm to patients by growing on open wounds,
skin lesions, burn injuries, or diabetic ulcers, and elsewhere. Biofilms are notoriously difficult to eradicate, in
large part because of the extracellular polymeric substance (EPS), a self-produced extracellular matrix in which
biofilm bacteria reside. The EPS benefits bacteria in many ways, including mediating quorum sensing, providing
nutrients, and blocking transport of antibiotics and host immune response. The ability to actively penetrate the
EPS and deliver anti-bacterial cargo where it is most needed would bypass many of these protections and could
thus have a transformative impact on the remediation of biofilms. First introduced in 2004, artificial self-propelled
particles (SPPs) can propel themselves through complex biological media and deliver cargo to specific locations.
Thus, SPPs hold significant potential for biomedical applications such as biofilm remediation. However, SPPs
must overcome significant challenges in the form of biocompatibility, tracking, and control to be viable for clinical
use. Here, we propose to leverage the burgeoning field of DNA nanotechnology to develop urease-powered
DNA-origami-based self-propelled particles (DNA-SPPs) for biofilm remediation. As a model organism, we focus
on the well-studied pathogen Pseudomonas aeruginosa. Aim 1 of this study will quantify the dependence of
DNA-SPPs’ locomotion on local urea concentration and pH and elucidate the extent to which they perform
chemotaxis in urea gradients. Aim 2 will test the hypothesis that if DNA-SPPs are decorated with glycosyl
hydrolase enzymes (which are widely used to disrupt the biofilm matrix, specifically in the case of P. aeruginosa),
they will degrade the biofilm matrix as they move through it, weakening the protection the EPS normally provides
to bacteria. The success of Aim 2 will be marked by greater efficacy of a model antibiotic (ceftazidime, which has
demonstrated efficacy at treating P. aeruginosa biofilms) administered topically. In Aim 3, we will load ceftazidime
directly onto DNA-SPPs using a pH-sensitive motif (e.g., I-motif) that undergoes structural changes in response
to pH decrease, thus releasing cargo only in acidic regions. By correlating the delivered payload to the pH
distribution, we will confirm the ability of DNA-SPPs to deliver cargo preferentially in acidic regions, where hard-
to-reach bacteria tend to cluster. Finally, we will assess the combinatorial benefits of the approaches in Aims 2
and 3 by using DNA-SPPs to both increase the biofilm’s permeability and to deliver antibiotics deep inside the
biofilm. The major output of this study will be design criteria for DNA-based enzyme-powered SPPs to disrupt
and deliver cargo in extracellular matrix (ECM) environments, which could have a major impact on the treatment
of biofilms, and will lay the foundation for a customizable platform technology applicable to a wide range of ECM-
mediated diseases.
项目概要/摘要
细菌生物膜是大多数人类感染的罪魁祸首,导致数万人死亡和数十亿人死亡。
每年的医疗费用仅通过在开放性伤口上生长而对患者造成重大伤害,
众所周知,皮肤损伤、烧伤或糖尿病性溃疡等很难根除。
很大程度上是因为细胞外聚合物(EPS),一种自身产生的细胞外基质,其中
EPS 在许多方面对细菌有好处,包括介导群体感应,提供
营养物质,并阻断抗生素的运输和宿主免疫反应的能力。
EPS 并在最需要的地方运送抗菌货物将绕过许多这些保护措施,并可能
从而对生物膜的修复产生变革性影响,于2004年首次推出人工自走式。
颗粒(SPP)可以通过复杂的生物介质推动自身并将货物运送到特定位置。
因此,SPP 在生物医学应用(例如生物膜修复)方面具有巨大潜力。
必须克服生物相容性、跟踪和控制方面的重大挑战,才能应用于临床
在这里,我们建议利用新兴的 DNA 纳米技术领域来开发脲酶动力。
用于生物膜修复的基于 DNA 折纸的自推进颗粒 (DNA-SPP) 作为模型生物,我们重点关注。
本研究的目标 1 将量化对经过充分研究的病原体铜绿假单胞菌的依赖性。
DNA-SPP 在局部尿素浓度和 pH 值上的运动并阐明它们的作用程度
目标 2 将检验 DNA-SPP 是否用糖基修饰的假设。
水解酶(广泛用于破坏生物膜基质,特别是铜绿假单胞菌),
当它们穿过生物膜基质时,它们会降解生物膜基质,削弱 EPS 通常提供的保护
Aim 2 的成功将以模型抗生素(头孢他啶,它具有更强的功效)为标志。
治疗铜绿假单胞菌生物膜的功效)在目标 3 中,我们将加载头孢他啶。
使用 pH 敏感基序(例如 I-基序)直接连接到 DNA-SPP 上,该基序会因响应而发生结构变化
通过将输送的有效负载与 pH 值相关联,从而仅在酸性区域释放货物。
分布,我们将确认 DNA-SPP 优先在酸性地区运送货物的能力,在这些地区,
最后,我们将评估目标 2 中方法的组合效益。
3 通过使用 DNA-SPP 来增加生物膜的渗透性并将抗生素输送到生物膜深处
这项研究的主要成果将是基于 DNA 的酶驱动的 SPP 破坏的设计标准。
并在细胞外基质(ECM)环境中输送货物,这可能对治疗产生重大影响
生物膜,并将为适用于广泛 ECM 的可定制平台技术奠定基础
介导的疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Lawrence Moran其他文献
Jeffrey Lawrence Moran的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于中医经典名方干预效应差异的非酒精性脂肪性肝病动物模型证候判别研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
利用肝癌动物模型开展化学可控的在体基因编辑体系的研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
雌激素抑制髓系白血病动物模型中粒细胞异常增生的机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
无菌动物模型与单细胞拉曼技术结合的猴与人自闭症靶标菌筛选及其机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Thiazolino-Pyridone Compounds as Novel Drugs for Tuberculosis
噻唑啉-吡啶酮化合物作为结核病新药
- 批准号:
10698829 - 财政年份:2023
- 资助金额:
$ 18.02万 - 项目类别:
Prevention of intracellular infection in diabetic wounds by commensal Staphylococcus epidermidis
共生表皮葡萄球菌预防糖尿病伤口细胞内感染
- 批准号:
10679628 - 财政年份:2023
- 资助金额:
$ 18.02万 - 项目类别:
Gut Microbial Factors in Farming Lifestyle and Allergic Sensitization
农业生活方式和过敏致敏中的肠道微生物因素
- 批准号:
10633368 - 财政年份:2023
- 资助金额:
$ 18.02万 - 项目类别:
Brewing anti-toxin drugs using probiotic yeast
利用益生菌酵母酿造抗毒素药物
- 批准号:
10687670 - 财政年份:2023
- 资助金额:
$ 18.02万 - 项目类别: