Modeling and analysis of the mechanochemical processes that govern clathrin-mediated endocytosis
控制网格蛋白介导的内吞作用的机械化学过程的建模和分析
基本信息
- 批准号:10521291
- 负责人:
- 金额:$ 30.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-12-15 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:ActinsAddressAffectAffinityBindingBinding ProteinsBiochemicalBiophysicsCell membraneCellsClathrinCommunitiesComputer ModelsCouplingCytoskeletonDataData SetDefectDevelopmentDiffusionDiseaseDown-RegulationDrug Delivery SystemsEndocytosisExplosionExtracellular FluidExtracellular SpaceFeedbackFilamentGenerationsGenesGoalsHeartHeart DiseasesHomeostasisImaging technologyKnowledgeLipid BilayersLiteratureMalignant NeoplasmsMammalian CellMeasuresMechanicsMediatingMembraneMembrane LipidsMembrane ProteinsMethodsMicrofilamentsMissionModelingModificationMolecularMorphologyNanoPillarNerve DegenerationPathologyPatternPlayPolymersPrincipal InvestigatorProbabilityProcessPropertyProteinsPublic HealthRadialReceptor SignalingRegulationResearchRoleSchemeShapesSiteStructureSurfaceTestingTheoretical modelUnited States National Institutes of HealthVesicleWorkYeastscomputerized toolsdensitydesignexperimental studyhuman diseasein vivoin vivo evaluationinnovationinsightmathematical methodsmembrane modelmodel developmentmulti-scale modelingnanomedicineopen sourcepolymerizationpredictive modelingrepositorysimulationspatiotemporaluptake
项目摘要
Project Summary
Endocytosis is the process of uptake of cargo and fluid from the extracellular space to inside the cell; defects in endo-
cytosis contribute to a wide spectrum of diseases including cancer, neurodegeneration, and heart disease. Clathrin-
mediated endocytosis (CME) is an archetypal example of a membrane deformation process where multiple variables
such as pre-existing membrane curvature, membrane bending due to the protein machinery, membrane tension regula-
tion, and actin-mediated forces govern the progression of vesiculation. Advances in imaging technology have recently
led to an explosion in morphological and biochemical data sets that track the progression of CME. While computa-
tional modeling of lipid bilayers has provided insight into the mechanics of membranes in general, a mechanistic and
predictive framework that can relate the plasma membrane composition and plasma membrane-cytoskeleton interac-
tions to the progression and robustness of CME is missing, resulting in a gap between the experimental advances
in the study of CME and a predictive, mechanistic framework for harnessing CME for nanomedicines. Preliminary
data from our group has shown that membrane tension plays an important role in governing the progression of CME.
How does membrane tension govern the progression of CME in the presence of membrane-protein interactions and
membrane-cytoskeleton interactions? Substantial preliminary data in this application supports the working hypothesis
that membrane tension is a dynamic quantity that evolves over the progression of CME to modulate the energy bar-
rier associated with vesiculation. Specifically, the work of the principal investigator, supported by findings from others
has identified that membrane tension governs CME through a snapthrough instability. Building on these preliminary
findings, the goal of the proposed work is to elucidate the fundamental biophysical principles of CME. In the proposed
work, we have outlined three hypotheses and aims aims that will enable us to close this knowledge gap. Aim 1 will test
the hypothesis that membrane-protein interactions during CME are regulated by membrane tension dynamically; this
hypothesis will be tested using new theoretical and computational models that will incorporate the energetics of mem-
brane-protein interactions and in-plane diffusion of proteins along the membrane. It is expected that membrane tension
will emerge as a dynamic modulator of local membrane deformations due to protein interactions. Aim 2 will test the
hypothesis that force generation during CME depends on the actin organization around an endocytic pit; this hypoth-
esis will focus on the development of theoretical models that incorporate the dynamic and stochastic actin-membrane
interactions and predict the spatio-temporal organization of actin filaments around an endocytic pit. Aim 3 will test
the hypothesis that pre-existing curvature of the membrane can modify the energy landscape of the progression of
CME; models will be developed to test this hypothesis using different initial curvatures of the substrate. Collectively, the
insights provided by the modeling effort conducted in these three aims will provide insight into how membrane-protein
and membrane-cytoskeleton interactions affect the progression of CME.
项目概要
内吞作用是从细胞外空间摄取货物和液体到细胞内部的过程;
细胞增多症会导致多种疾病,包括癌症、神经退行性变和网格蛋白-。
介导的内吞作用(CME)是膜变形过程的典型例子,其中多个变量
例如预先存在的膜曲率、由于蛋白质机械导致的膜弯曲、膜张力调节
和肌动蛋白介导的力量最近在成像技术方面取得了进展。
导致了跟踪 CME 进展的形态学和生化数据集的爆炸式增长。
脂质双层的模拟模型提供了对一般膜力学的深入了解,这是一种机械和
可以将质膜组成和质膜-细胞骨架相互作用联系起来的预测框架
缺少对 CME 进展和稳健性的关注,导致实验进展之间存在差距
研究 CME 以及利用 CME 进行纳米医学初步研究的预测机制框架。
我们小组的数据表明,膜张力在控制 CME 的进展中起着重要作用。
在存在膜蛋白相互作用的情况下,膜张力如何控制 CME 的进展?
该应用中的大量初步数据支持工作假设吗?
膜张力是一个动态量,随着 CME 的进展而演变,以调节能量棒-
具体而言,主要研究人员的工作得到了其他人的研究结果的支持。
在这些初步研究的基础上,我们发现膜张力通过突袭不稳定性来控制 CME。
根据研究结果,拟议工作的目标是阐明 CME 的基本生物物理原理。
在工作中,我们概述了三个假设和目标,这将使我们能够缩小目标 1 将测试的知识差距。
CME 过程中膜蛋白相互作用受膜张力动态调节的假设;
假设将使用新的理论和计算模型进行测试,该模型将结合记忆的能量学
膜-蛋白质相互作用和蛋白质沿膜的平面内扩散是预期的膜张力。
由于蛋白质相互作用,将成为局部膜变形的动态调节剂。目标 2 将测试
假设 CME 过程中力的产生取决于内吞坑周围的肌动蛋白组织;
esis将重点开发结合动态和随机肌动蛋白膜的理论模型
相互作用并预测内吞坑周围肌动蛋白丝的时空组织,目标 3 将进行测试。
假设膜的预先存在的曲率可以改变进展的能量景观
CME;将开发模型来使用基底的不同初始曲率来测试这一假设。
在这三个目标中进行的建模工作所提供的见解将提供关于膜蛋白如何
膜-细胞骨架相互作用影响 CME 的进展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Padmini Rangamani其他文献
Padmini Rangamani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Padmini Rangamani', 18)}}的其他基金
Modeling and analysis of the mechanochemical processes that govern clathrin-mediated endocytosis
控制网格蛋白介导的内吞作用的机械化学过程的建模和分析
- 批准号:
10307539 - 财政年份:2019
- 资助金额:
$ 30.59万 - 项目类别:
Modeling and analysis of the mechanochemical processes that govern clathrin-mediated endocytosis
控制网格蛋白介导的内吞作用的机械化学过程的建模和分析
- 批准号:
9886057 - 财政年份:2019
- 资助金额:
$ 30.59万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Actin gating of crosstalk between Rho GTPases in cell migration
细胞迁移中 Rho GTP 酶之间串扰的肌动蛋白门控
- 批准号:
10736927 - 财政年份:2023
- 资助金额:
$ 30.59万 - 项目类别:
Understanding Chirality at Cell-Cell Junctions With Microscale Platforms
利用微型平台了解细胞与细胞连接处的手性
- 批准号:
10587627 - 财政年份:2023
- 资助金额:
$ 30.59万 - 项目类别:
Chlamydia type III effectors affecting the host actin-based cytoskeleton
III 型衣原体效应子影响宿主肌动蛋白细胞骨架
- 批准号:
10632935 - 财政年份:2023
- 资助金额:
$ 30.59万 - 项目类别:
Characterizing Wnt Signaling Pathways in Axon Guidance
轴突引导中 Wnt 信号通路的特征
- 批准号:
10815443 - 财政年份:2023
- 资助金额:
$ 30.59万 - 项目类别:
A novel role for Wasl signaling in the regulation of skeletal patterning
Wasl 信号在骨骼模式调节中的新作用
- 批准号:
10718448 - 财政年份:2023
- 资助金额:
$ 30.59万 - 项目类别: