Dissecting the transcriptional network governing differentiation of periderm

剖析控制周皮分化的转录网络

基本信息

  • 批准号:
    10521268
  • 负责人:
  • 金额:
    $ 51.67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-01-01 至 2024-11-30
  • 项目状态:
    已结题

项目摘要

Our understanding of the pathogenic mechanisms for orofacial clefting (OFC) is limited by the fact that less than half of the heritable risk for this disorder has been assigned to specific genes. Towards identifying pathological sequence variants among the many irrelevant ones detected in exomes and whole genomes of patients with this disorder, an understanding of the gene regulatory networks (GRNs) that govern the development of relevant tissues, including the oral periderm, is essential. We propose a systems biology approach to analyzing the periderm GRN. Using this approach in the past enabled us to identify three novel OFC risk genes. We will utilize two model organisms, zebrafish and mouse, because the periderm differentiation GRN appears to be highly conserved. In zebrafish, the periderm differentiates very early in embryogenesis, greatly facilitating the execution and interpretation of genetic perturbation analyses. Mouse, on the other hand, has the advantage that its craniofacial anatomy is more similar to that of humans. In Aim 1, we will determine the zebrafish periderm differentiation GRN using a state-of-the-art network inference algorithm, NetProphet 2. This tool carries out both a coexpression analysis and a differential expression analysis. Input data sets will include RNA-seq expression profiles we will generate from loss-of-function (LOF) embryos for 4 key transcription factors (TF) known to participate in this GRN. We will also identify the direct gene linkages of these key TFs in the periderm GRN. Finally, we will test a novel candidate member of the periderm GRN, Tead, by carrying out LOF tests in zebrafish, thereby exploiting the strength of this model system. In Aim 2 we will deduce the murine oral periderm differentiation GRN, also using the NetProphet algorithm. Input datasets will include expression profiles of periderm isolated from the palate shelves of wild-type mouse embryos, and from heterozygous mutants of three key TFs: Irf6, Grhl3 and Tfap2a. For each of the mutant genotypes there is evidence of abnormal periderm differentiation. We will also identify murine periderm enhancer candidates by sorting GFP-positive and -negative cells from Krt17-gfp transgenic embryos, performing ATAC-seq on both populations, and H3K27Ac ChIP-seq on cells from palate shelves and the nasal cavity. As in Aim 1, we will also identify the direct gene linkages of the key TFs. We will train a machine learning algorithm on palate periderm enhancers, and use the resulting scoring function to prioritize OFC-associated SNPs near genes that are expressed in periderm for those that are likely to directly affect risk for OFC. Finally, we will perform allele- specific reporter assays on the top candidate SNPs from each of three loci. The expected outcome is a deeper understanding of the specific TFs and cis-regulatory elements that control differentiation of the periderm. This will have a broad impact because it will enable human geneticists to prioritize candidate risk variants that emerge from whole-exome and -genome sequencing analyses of OFC.
我们对口面裂(OFC)的致病机制的理解受到以下事实的限制 该疾病的遗传风险的一半已分配给特定基因。识别识别 许多与外来体和整个基因组中检测到的无关的病理序列变异 患有这种疾病的患者,了解控制基因调节网络(GRN) 相关组织的发展,包括口服periderm是必不可少的。我们提出了系统生物学 分析Periderm GRN的方法。过去使用这种方法使我们能够识别三本小说 OFC风险基因。我们将利用两个模型生物,斑马鱼和鼠标,因为Periderm 分化GRN似乎是高度保守的。在斑马鱼中,佩里德尔在很早的早期就区分了 胚胎发生,极大地促进了遗传扰动分析的执行和解释。鼠标,打开 另一方面,其优势是其颅面解剖结构与人类更相似。在AIM 1中,我们 将使用最先进的网络推理算法确定斑马鱼Periderm分化GRN, NetProphet 2。此工具同时进行了共表达分析和差异表达分析。输入 数据集将包括我们将从功能丧失(LOF)胚胎中生成的RNA-seq表达曲线4 已知参与此GRN的关键转录因子(TF)。我们还将确定直接基因链接 Periderm GRN中的这些关键TF。最后,我们将测试Periderm Grn的新型候选人, 通过在斑马鱼中进行LOF测试,从而利用了该模型系统的强度。在目标2中我们 也将使用NetProphet算法推断出鼠口服periderm分化GRN。输入数据集 将包括从野生型小鼠胚胎的口感架子中分离出的佩里德尔的表达曲线,以及 来自三个关键TF的杂合突变体:IRF6,GRHL3和TFAP2A。对于每个突变基因型都有 异常培训分化的证据。我们还将通过 从KRT17-GFP转基因胚胎中对GFP阳性和阴性细胞进行排序,在这两种情况下都进行ATAC-SEQ 口感和鼻腔中的细胞上的人群和H3K27AC芯片序列。就像在AIM 1中一样,我们将 还要确定密钥TF的直接基因链接。我们将训练一种机器学习算法的味觉 Periderm增强剂,并使用由此产生的评分函数来优先考虑与基因相关的SNP 对于可能直接影响OFC风险的人,用Periderm表示。最后,我们将执行等位基因 - 来自三个基因座的每个基因座的每个候选SNP上的特定记者测定法。预期的结果更深 了解控制佩里德尔分化的特定TF和顺式调节元件。这 将产生广泛的影响,因为它将使人类遗传学家能够优先考虑候选风险变体 来自OFC的全外显体和 - 基因组测序分析。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Zebrafish models of orofacial clefts.
Genes conserved in bilaterians but jointly lost with Myc during nematode evolution are enriched in cell proliferation and cell migration functions.
Beyond MITF: Multiple transcription factors directly regulate the cellular phenotype in melanocytes and melanoma.
  • DOI:
    10.1111/pcmr.12611
  • 发表时间:
    2017-09
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Seberg HE;Van Otterloo E;Cornell RA
  • 通讯作者:
    Cornell RA
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Aaron Cornell其他文献

Robert Aaron Cornell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Aaron Cornell', 18)}}的其他基金

Genetic underpinnings of craniofacial disorders explored with spatial sequencing
通过空间测序探索颅面疾病的遗传基础
  • 批准号:
    10712635
  • 财政年份:
    2023
  • 资助金额:
    $ 51.67万
  • 项目类别:
Regulation of the Melanocyte Lineage by the AP2 Transcription Factor Family
AP2 转录因子家族对黑素细胞谱系的调节
  • 批准号:
    10607024
  • 财政年份:
    2022
  • 资助金额:
    $ 51.67万
  • 项目类别:
Dissecting the transcriptional network governing differentiation of periderm
剖析控制周皮分化的转录网络
  • 批准号:
    10589307
  • 财政年份:
    2022
  • 资助金额:
    $ 51.67万
  • 项目类别:
Cornell- Common Fund Data Supplement Regulation of the Melanocyte Lineage by the AP2 Transcription Factor Family
康奈尔大学共同基金数据补充 AP2 转录因子家族对黑素细胞谱系的调节
  • 批准号:
    9985505
  • 财政年份:
    2019
  • 资助金额:
    $ 51.67万
  • 项目类别:
Dissecting the transcriptional network governing differentiation of periderm
剖析控制周皮分化的转录网络
  • 批准号:
    9900769
  • 财政年份:
    2019
  • 资助金额:
    $ 51.67万
  • 项目类别:
Dissecting the transcriptional network governing differentiation of periderm
剖析控制周皮分化的转录网络
  • 批准号:
    10058264
  • 财政年份:
    2019
  • 资助金额:
    $ 51.67万
  • 项目类别:
Functional tests of non-coding DNA variants associated with risk for orofacial clefting
与口面部裂风险相关的非编码 DNA 变异的功能测试
  • 批准号:
    9924262
  • 财政年份:
    2018
  • 资助金额:
    $ 51.67万
  • 项目类别:
Functional tests of non-coding DNA variants associated with risk for orofacial clefting.
与口面部裂风险相关的非编码 DNA 变异的功能测试。
  • 批准号:
    10614747
  • 财政年份:
    2018
  • 资助金额:
    $ 51.67万
  • 项目类别:
Regulation of the melanocyte lineage by the AP2 transcription factor family
AP2 转录因子家族对黑素细胞谱系的调节
  • 批准号:
    8832130
  • 财政年份:
    2014
  • 资助金额:
    $ 51.67万
  • 项目类别:
Dissecting the transciptional network governing differentiation of periderm
剖析控制周皮分化的转录网络
  • 批准号:
    9267963
  • 财政年份:
    2013
  • 资助金额:
    $ 51.67万
  • 项目类别:

相似国自然基金

基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
  • 批准号:
    52378011
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
社交网络上观点动力学的重要影响因素与高效算法
  • 批准号:
    62372112
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
  • 批准号:
    72372021
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
  • 批准号:
    72372070
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
算法鸿沟影响因素与作用机制研究
  • 批准号:
    72304017
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Cardiovascular regeneration and pioneer factors
心血管再生和先锋因素
  • 批准号:
    10649338
  • 财政年份:
    2023
  • 资助金额:
    $ 51.67万
  • 项目类别:
Predicting 3D physical gene-enhancer interactions through integration of GTEx and 4DN data
通过整合 GTEx 和 4DN 数据预测 3D 物理基因增强子相互作用
  • 批准号:
    10776871
  • 财政年份:
    2023
  • 资助金额:
    $ 51.67万
  • 项目类别:
Using auxin to understand context-dependent hormone response
使用生长素了解背景依赖性激素反应
  • 批准号:
    10605909
  • 财政年份:
    2023
  • 资助金额:
    $ 51.67万
  • 项目类别:
Precision Medicine Digital Twins for Alzheimer’s Target and Drug Discovery and Longevity
用于阿尔茨海默氏症靶点和药物发现及长寿的精准医学数字孪生
  • 批准号:
    10727793
  • 财政年份:
    2023
  • 资助金额:
    $ 51.67万
  • 项目类别:
Novel methods for large-scale genomic interval comparison
大规模基因组区间比较的新方法
  • 批准号:
    10678947
  • 财政年份:
    2022
  • 资助金额:
    $ 51.67万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了