Automatic Organ Segmentation Tool for Radiation Treatment Planning of Cancers
用于癌症放射治疗计划的自动器官分割工具
基本信息
- 批准号:10518374
- 负责人:
- 金额:$ 4.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptedAdoptionAlgorithmsAmericanAreaAtlasesAttentionCancer PatientChestClinicalComputer Vision SystemsComputer softwareConsumptionDevelopmentDoseEarly DiagnosisEnvironmentHealthcareHeterogeneityHourHumanIntraobserver VariabilityLabelMalignant NeoplasmsManualsMedicalMedicineMethodsOrganOutcomePatient-Focused OutcomesPerformanceProcessRadiation Dose UnitRadiation therapyRiskScanningSiteSliceSurvival RateTimeToxic effectTreatment CostX-Ray Computed Tomographyautomated segmentationbasecancer radiation therapycancer therapycloud basedcostdeep learningdosimetryimprovedlearning strategymillimetersegmentation algorithmsimulationsuccesstooltreatment planningusabilityvalidation studies
项目摘要
ABSTRACT
As early detection and better treatment have increased cancer patient survival rates, the importance of
protecting normal organs during radiation treatment is drawing more attention, which is critical in reducing long
term toxicity of cancers. To avoid excessively high radiation doses to organs-at-risk (OARs), OARs need to be
correctly segmented from simulation computed tomography (CT) scans during radiation treatment planning to
get an accurate dose distribution. Despite tremendous effort in developing semi- or fully-automatic
segmentation solutions, current automated segmentation software, mostly using the atlas-based methods, has
not yet reached the level of accuracy and robustness required for clinical usage. Therefore, in current practice,
significant manual efforts are still required in the OAR segmentation process. Manual contouring suffers from
inter- and intra-observer variability, as well as institutional variability where different sites adopt distinct
contouring atlases and labeling criteria, thus leading to inaccuracy and variability in OAR segmentation. When
OARs are very close to the treatment target, segmentation errors as small as a few millimeters can have a
statistically significant impact on dosimetry distribution and outcome. In addition, it is also costly and time
consuming as it can take 1-2 hours of a clinicians’ time to segment major thoracic organs due to the large
number of axial slices required. In summary, an accurate and fast process for segmenting OARs in treatment
planning using CT scans is needed for improving patient outcomes and reducing the cost of radiation therapy
of cancers. In recent years, the rapid development of deep learning methods has revolutionized many
computer-vision areas and the adoption of deep learning in medical applications has shown great success.
Based on a deep-learning-based algorithm we developed that achieved better-than-human performance and
ranked 1st in 2017 American Association of Physicist in Medicine Thoracic Auto-segmentation Challenge, an
automatic OAR segmentation product will be developed in this project with the three aims: 1) further improve
the performance and robustness of OAR segmentation algorithms, focusing on addressing the heterogeneity
issue of different clinical environments; 2) further enrich the functionalities and enhance usability of the cloud-
based software product; and 3) perform clinical validation study on the algorithm performance and software
usability at collaborating sites. With this product, the segmentation accuracy can be improved, leading to more
robust treatment plans in protecting normal organs and improved long term patient outcome. The time and cost
of radiation treatment planning can be greatly reduced, contributing to a more affordable cancer treatment and
reduced healthcare burden.
抽象的
随着早期检测和更好的治疗增加了癌症患者的存活率,
在辐射治疗期间保护正常的器官正在引起更多注意,这对于减少长时间至关重要
癌症的术语毒性。为避免高辐射剂量到风险的器官(桨),桨需要为
在放射治疗计划期间正确分割了模拟计算机断层扫描(CT)扫描到
获得准确的剂量分布。尽管巨大的努力在开发半自动或完全自动
分割解决方案,当前的自动分割软件,主要是使用基于ATLAS的方法
尚未达到临床使用所需的准确性和鲁棒程度。因此,在当前的实践中,
在OAR分割过程中,仍然需要进行重大的手动工作。手动轮廓遭受
观察者间和观察者内变异性以及机构可变性,不同的站点采用不同的站点
轮廓图谱和标记标准,从而导致OAR分割的不准确性和可变性。什么时候
OAR非常接近治疗目标,分割误差很小,只有几毫米可以具有
对剂量分布和结果的统计学意义。此外,这也是昂贵的时间
消费,因为临床医生可能需要1-2个小时的时间才能分割主要的胸腔器官
需要轴向切片数。总而言之,在治疗中分割桨的准确而快速的过程
需要计划使用CT扫描来改善患者预后和降低放射治疗的成本
癌症。近年来,深度学习方法的快速发展彻底改变了许多
计算机视觉领域和在医疗应用中采用深度学习已取得了巨大的成功。
基于我们开发的基于深度学习的算法,它取得了比人类的表现更好的
在2017年美国医学物理学家胸腔自动分割挑战中排名第一,这是一个
该项目将开发自动OAR细分产品,其目的是:1)进一步改善
OAR分割算法的性能和鲁棒性,重点是解决异质性
不同的临床环境问题; 2)进一步丰富了云的功能并提高了云的可用性
基于的软件产品; 3)对算法性能和软件进行临床验证研究
协作网站的可用性。使用该产品,可以提高分割精度,从而导致更多
强大的治疗计划,以保护正常器官并改善长期患者结局。时间和成本
可以大大减少辐射治疗计划,从而导致更实惠的癌症治疗和
减轻医疗保健负担。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Improving accuracy and robustness of deep convolutional neural network based thoracic OAR segmentation.
- DOI:10.1088/1361-6560/ab7877
- 发表时间:2020-03-31
- 期刊:
- 影响因子:3.5
- 作者:Feng X;Bernard ME;Hunter T;Chen Q
- 通讯作者:Chen Q
Convolutional neural network enhancement of fast-scan low-dose cone-beam CT images for head and neck radiotherapy.
- DOI:10.1088/1361-6560/ab6240
- 发表时间:2020-01-27
- 期刊:
- 影响因子:3.5
- 作者:Yuan N;Dyer B;Rao S;Chen Q;Benedict S;Shang L;Kang Y;Qi J;Rong Y
- 通讯作者:Rong Y
Contouring quality assurance methodology based on multiple geometric features against deep learning auto-segmentation.
基于多个几何特征和深度学习自动分割的轮廓质量保证方法。
- DOI:10.1002/mp.16299
- 发表时间:2023
- 期刊:
- 影响因子:3.8
- 作者:Duan,Jingwei;Bernard,MarkE;Castle,JamesR;Feng,Xue;Wang,Chi;Kenamond,MarkC;Chen,Quan
- 通讯作者:Chen,Quan
Head and neck tumor segmentation convolutional neural network robust to missing PET/CT modalities using channel dropout.
- DOI:10.1088/1361-6560/accac9
- 发表时间:2023-04-25
- 期刊:
- 影响因子:3.5
- 作者:
- 通讯作者:
Development of a virtual source model for Monte Carlo-based independent dose calculation for varian linac.
- DOI:10.1002/acm2.13556
- 发表时间:2022-05
- 期刊:
- 影响因子:2.1
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xue Feng其他文献
PTPN22-1123G C polymorphism is associated with susceptibility to primary immune thrombocytopenia in Chinese population
PTPN22-1123G
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:3.3
- 作者:
Ge Jing;Li Huiyuan;Gu Dongsheng;Du Weiting;Xue Feng;Sui Tao;Xu Jianhui;Yang Renchi - 通讯作者:
Yang Renchi
Xue Feng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xue Feng', 18)}}的其他基金
Improved Diagnosis of Shunt Malfunction with Automatic Quantification of Ventricular Space
通过心室空间自动量化改进分流故障的诊断
- 批准号:
10384590 - 财政年份:2022
- 资助金额:
$ 4.95万 - 项目类别:
Automatic Organ Segmentation Tool for Radiation Treatment Planning of Cancers
用于癌症放射治疗计划的自动器官分割工具
- 批准号:
10221655 - 财政年份:2019
- 资助金额:
$ 4.95万 - 项目类别:
Automatic Organ Segmentation Tool for Radiation Treatment Planning of Cancers
用于癌症放射治疗计划的自动器官分割工具
- 批准号:
10081752 - 财政年份:2019
- 资助金额:
$ 4.95万 - 项目类别:
相似国自然基金
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
破解老年人数字鸿沟:老年人采用数字技术的决策过程、客观障碍和应对策略
- 批准号:72303205
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
通过抑制流体运动和采用双能谱方法来改进烧蚀速率测量的研究
- 批准号:12305261
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
采用多种稀疏自注意力机制的Transformer隧道衬砌裂缝检测方法研究
- 批准号:62301339
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Implementation of Innovative Treatment for Moral Injury Syndrome: A Hybrid Type 2 Study
道德伤害综合症创新治疗的实施:2 型混合研究
- 批准号:
10752930 - 财政年份:2024
- 资助金额:
$ 4.95万 - 项目类别:
Optimization of electromechanical monitoring of engineered heart tissues
工程心脏组织机电监测的优化
- 批准号:
10673513 - 财政年份:2023
- 资助金额:
$ 4.95万 - 项目类别:
The University of Miami AIDS Research Center on Mental Health and HIV/AIDS - Center for HIV & Research in Mental Health (CHARM)Research Core - EIS
迈阿密大学艾滋病心理健康和艾滋病毒/艾滋病研究中心 - Center for HIV
- 批准号:
10686546 - 财政年份:2023
- 资助金额:
$ 4.95万 - 项目类别:
The RaDIANT Health Systems Intervention for Equity in Kidney Transplantation
Radiant 卫生系统干预肾移植的公平性
- 批准号:
10681998 - 财政年份:2023
- 资助金额:
$ 4.95万 - 项目类别:
Extensible Open Source Zero-Footprint Web Viewer for Cancer Imaging Research
用于癌症成像研究的可扩展开源零足迹 Web 查看器
- 批准号:
10644112 - 财政年份:2023
- 资助金额:
$ 4.95万 - 项目类别: