Using natural language processing to determine predictors of healthy diet and physical activity behavior change in ovarian cancer survivors
使用自然语言处理确定卵巢癌幸存者健康饮食和身体活动行为变化的预测因子
基本信息
- 批准号:10510666
- 负责人:
- 金额:$ 18.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdherenceAdoptionAffectAmericanAmerican Cancer SocietyArtificial IntelligenceBehaviorBehavioralBehavioral MedicineCancer SurvivorCharacteristicsChronic DiseaseClinicalClinical DataComputersCoupledDataData SetDietDimensionsDisease ProgressionEducational InterventionEffectivenessFatty acid glycerol estersFiberFruitFundingGoalsGuidelinesHealthHealth educationHourHumanIndividualInstitutesInterventionLanguageLearningLife StyleMachine LearningMalignant NeoplasmsMalignant neoplasm of ovaryMethodsModelingMonitorNatural Language ProcessingNeural Network SimulationOutcomeParticipantPatient Outcomes AssessmentsPatientsPatternPersonal SatisfactionPhysical activityPopulationPreventiveProtocols documentationProviderRandomizedRecommendationRecurrent Malignant NeoplasmReportingRiskRoleSignal TransductionSpeechSurvivorsSystemTechniquesTelephoneTestingTimeTrainingTreatment EfficacyTrial of LaborUnited StatesVegetablesVoiceanticancer researchattentional controlbehavior changebehavior predictionbehavioral adherencebehavioral outcomecancer therapycostdemographicsexperiencegood diethealthy lifestylehealthy weighthigh riskimprovedinterestlifestyle datalifestyle interventionlongitudinal datasetmachine learning algorithmmachine learning modelmotivational enhancement therapynovelnutritionoutcome predictionpredictive modelingpreventprogramstelephone coachingtelephone-based
项目摘要
ABSTRACT
Cancer survivors are a growing population in the United States; more than 16 million currently live in the US and
by 2030 this number is expected to exceed 22 million. It is estimated that more than 50 percent of new cancer
cases could be eliminated through a combination of healthy behaviors (e.g., physical activity and healthy diet);
and cancer survivors are at high risk for developing new and recurrent cancer. Unfortunately, a significant
percentage of cancer survivors are not attaining the cancer preventive guidelines of healthy diet and physical
activity. In the past few decades, a variety of telephone-based lifestyle interventions have demonstrated
effectiveness in helping survivors meet cancer preventive guidelines, however these trials are labor intensive
and expensive to deliver, limiting their potential for broad dissemination. We propose to address this hurdle by
taking advantage of recent advances in artificial intelligence to reduce the cost and maximize the impact of these
much-needed interventions. Machine learning (ML) and Natural Language Processing (NLP) are analytical
techniques that automatically learn from direct and indirect patterns in data. We propose to use machine learned
algorithms to analyze speech to aid in predicting who may be at risk of poor adoption of healthy lifestyle
behaviors. These speech data will come from the Lifestyle Intervention for Ovarian cancer Enhanced Survival
(LIVES) study, a telephone-based lifestyle intervention testing whether a diet low in fat and high in vegetables,
fruit, and fiber, coupled with increased physical activity will increase time to disease progression in 1200 ovarian
cancer survivors who have recently completed treatment, as compared to an attention control. Intervention
coaches employed motivational interviewing to elicit behavior change and all calls on the LIVES trial were
recorded with repeat assessments of diet, physical activity, patient reported and clinical outcomes. We will use
this existing and robust longitudinal data set, which pairs conversational speech data with explicit outcomes, to
achieve the following objectives. 1) Develop a ML model to identify patterns in the interactions between coaches
and their participants that signal a likelihood of optimal behavior change in diet and physical activity given the
comprehensive LIVES data set, utilizing voice recorded calls, demographics, and clinical and patient reported
outcomes collected at multiple time points. 2) Decompose the ML model in terms of “intervenable factors”, so
that participant affect, coach adherence to the intervention protocol, and other important aspects of the
interaction can be individually evaluated for their role in predicting behavior change, as well as adherence to
intervention goals. This decomposition will directly enable early and targeted adjustments to intervention plans
for individuals, reducing the cost and increasing the efficacy of intervention strategies. ML and NLP methods can
produce models that listen to a coaching conversation and automatically predict whether it will result in positive
change towards enactment of healthy lifestyle behaviors. Such predictive models would enable more efficient,
effective, and individualized lifestyle interventions, the first step towards personalized behavioral medicine.
抽象的
美国的癌症幸存者人数不断增长;目前有超过 1600 万人生活在美国,并且
到 2030 年,这一数字预计将超过 2200 万,估计超过 50% 是新发癌症。
可以通过健康行为(例如身体活动和健康饮食)的结合来消除病例;
不幸的是,癌症幸存者患新发癌症和复发癌症的风险很高。
癌症幸存者的百分比未达到健康饮食和身体健康的癌症预防指南
在过去的几十年里,各种基于电话的生活方式干预措施已经被证明。
有效帮助幸存者满足癌症预防指南,但这些试验是劳动密集型的
且交付成本昂贵,限制了其广泛传播的潜力。我们建议通过以下方式解决这一障碍。
利用人工智能的最新进展来降低成本并最大限度地发挥这些影响
机器学习 (ML) 和自然语言处理 (NLP) 是分析性的干预措施。
我们建议使用机器学习的技术,自动从数据中的直接和间接模式中学习。
分析语音的算法,以帮助预测谁可能面临健康生活方式不良的风险
这些语音数据将来自卵巢癌增强生存的生活方式干预。
(LIVES)研究,一项基于电话的生活方式干预测试是否低脂肪和高蔬菜饮食,
第 1200 章
与注意力干预相比,最近完成治疗的癌症幸存者。
教练采用动机性访谈来引发行为改变,并且 LIVES 试验中的所有电话均经过
我们将使用对饮食、体力活动、患者报告和临床结果的重复评估进行记录。
这个现有的、强大的纵向数据集将会话语音数据与明确的结果配对,以
实现以下目标 1) 开发 ML 模型来识别教练之间交互的模式。
以及他们的参与者发出信号,考虑到饮食和身体活动发生最佳行为改变的可能性
全面的 LIVES 数据集,利用语音通话记录、人口统计数据以及临床和患者报告
在多个时间点收集的结果 2)根据“可干预因素”分解机器学习模型,因此
影响教练对干预方案的遵守以及参与者的其他重要方面
可以单独评估互动在预测行为变化以及遵守行为方面的作用
这种分解将直接促进干预计划的早期和有针对性的调整。
对于个人来说,降低机器学习和自然语言处理方法的成本并提高其有效性。
生成能够聆听教练对话并自动预测是否会产生积极结果的模型
朝着制定健康的生活方式行为的转变,这种预测模型将实现更高效、更高效的目标。
有效的、个性化的生活方式干预,是迈向个性化行为医学的第一步。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Bethard其他文献
Steven Bethard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Bethard', 18)}}的其他基金
Extended Methods and Software Development for Health NLP
健康 NLP 的扩展方法和软件开发
- 批准号:
10413157 - 财政年份:2016
- 资助金额:
$ 18.19万 - 项目类别:
Extended Methods and Software Development for Health NLP
健康 NLP 的扩展方法和软件开发
- 批准号:
10209178 - 财政年份:2016
- 资助金额:
$ 18.19万 - 项目类别:
Extended Methods and Software Development for Health NLP
健康 NLP 的扩展方法和软件开发
- 批准号:
10689709 - 财政年份:2016
- 资助金额:
$ 18.19万 - 项目类别:
相似国自然基金
基于保护动机理论的新确诊青少年HIV感染者抗病毒治疗依从性“游戏+”健康教育及作用机制研究
- 批准号:82304256
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于前景理论的ADHD用药决策过程与用药依从性内在机制研究
- 批准号:72304279
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于强化学习AI聊天机器人对MSM开展PrEP服药依从性精准干预模式探索及干预效果研究
- 批准号:82373638
- 批准年份:2023
- 资助金额:59 万元
- 项目类别:面上项目
基于HAPA理论的PCI术后患者运动依从性驱动机制与干预方案构建研究
- 批准号:72304180
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CAS理论视角下农村老年心血管代谢性共病管理依从性的社区-患者协同机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Mitigating the Impact of Stigma and Shame as a Barrier to Viral Suppression Among MSM Living with HIV and Substance Use Disorders
减轻耻辱感和羞耻感对感染艾滋病毒和药物滥用的 MSM 的病毒抑制造成的影响
- 批准号:
10683694 - 财政年份:2023
- 资助金额:
$ 18.19万 - 项目类别:
Core A: Administrative, Career Development, and Research Integration Core
核心 A:行政、职业发展和研究整合核心
- 批准号:
10630466 - 财政年份:2023
- 资助金额:
$ 18.19万 - 项目类别:
Move and Snooze: Adding insomnia treatment to an exercise program to improve pain outcomes in older adults with knee osteoarthritis
活动和小睡:在锻炼计划中添加失眠治疗,以改善患有膝骨关节炎的老年人的疼痛结果
- 批准号:
10797056 - 财政年份:2023
- 资助金额:
$ 18.19万 - 项目类别:
Implementation Evaluation of PACT Pharmacy Management of Heart Failure in VISN 21
VISN 21 心力衰竭 PACT 药房管理实施评价
- 批准号:
10753388 - 财政年份:2023
- 资助金额:
$ 18.19万 - 项目类别:
Promoting Viral Suppression through the CHAMPS+ Intervention in the Deep South
通过 CHAMPS 干预南部腹地促进病毒抑制
- 批准号:
10819823 - 财政年份:2023
- 资助金额:
$ 18.19万 - 项目类别: