Kilohertz 3D Optical Mapping of Atrial Fibrillation in Beating Zebrafish Hearts
斑马鱼心脏跳动中心房颤动的千赫兹 3D 光学测绘
基本信息
- 批准号:10510352
- 负责人:
- 金额:$ 62.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAction PotentialsAddressAlgorithmsAnimalsArrhythmiaAtrial FibrillationBlood flowCalciumCardiacCardiac developmentCardiovascular systemCellsClinicalColorColumbidaeContractsCouplingData AnalysesEconomic BurdenEconomicsEmbryoEmerging TechnologiesFacultyFluorescenceFluorescence MicroscopyFunctional disorderGoalsHeartHeart AtriumHumanImageIschemic StrokeKnowledgeLightMLLT3 geneMapsMechanicsMediatingMedicineMembraneMethodsMicroscopeMicroscopyModelingMorbidity - disease rateMorphologic artifactsMotionMovementMyocardialMyocardial ContractionMyocardiumOpticsPalpitationsParalysedPathogenesisPatternPerformancePharmacologyPhenotypeProblem SolvingProcessPropertyRecordsReproductionResearchResearch PersonnelResolutionRisk FactorsSamplingScanningSignal TransductionSpeedSystemTechniquesTestingThree-Dimensional ImagingTimeVentricularX-Ray Computed TomographyZebrafishexperiencefluorophoreheart functionheart motionhemodynamicsinnovationinterestlensmortalitymoviemultiplexed imagingoptical imagingreconstructionspatiotemporalspectrographtemporal measurementtomographytwo-dimensionalvirtualvoltage
项目摘要
Project Summary: Atrial fibrillation (AF) is the most frequent cardiac arrhythmia, and it is a major risk factor for
ischemic stroke and provokes morbidity and mortality along with a significant economic burden. Although AF has
been studied in various animals, the embryonic zebrafish has been the genetically tractable and optically
transparent model to investigate electromechanical coupling during cardiac development. Like in humans, the
action potential and the consequent myocardial contraction are also key indicators of cardiac function in the
zebrafish. By virtual of its transparency, optical mapping has been a primary means to investigate the interplay
between cardiac action potential and myocardial contraction to study the mechanisms of AF.
Dysregulation of electrical and mechanical coupling is a significant factor underlying the pathogenesis and
perpetuation of AF. Optical mapping of electromechanical decoupling in zebrafish is nontrivial because it requires
simultaneous recording of fast propagating voltage waves and myocardial contraction. Particularly in a beating
heart, the rapid myocardial contraction can easily blur the image—the motion artifacts superimpose the wave
patterns appearing in the optical maps and can prohibit further analysis of the imaging data. Pharmacological
uncoupling has been widely used to suppress heart motion. However, this makes studying electromechanical
coupling impossible. Alternatively, post-acquisition synchronization approach records a z-stack of movies, each
covering at least one cardiac cycle. After the recording is completed, one 3D cardiac cycle can be reconstructed
by synchronizing the movies in time. Nonetheless, this method is inapplicable to nonperiodic movements, such
as irregular heartbeats with AF. Therefore, there is an unmet need to develop innovative optical techniques for
high-speed 3D mapping of electromechanical coupling in a rapidly and irregularly beating AF heart.
To solve this problem, we propose to develop a light-sheet light-field tomography (light-sheet LIFT) technique
for kilohertz 3D imaging of electromechanical coupling in zebrafish hearts undergoing AF. Our method has only
recently become possible due to two emerging technologies, light-field tomography (LIFT) and light-sheet
microscopy, both of which we have extensive experience with. We will integrate LIFT with light-sheet microscopy
and enable high-resolution 3D imaging with an unprecedented volumetric frame rate. The resultant system, light-
sheet LIFT, will provide enough spatiotemporal resolution to fully depict the interplay between voltage waves,
myocardial contraction, and intracardiac blood flow in a pitx2c zebrafish arrhythmia model. We expect our
method will advance the understanding of AF's fundamental mechanism from the electrical activities at a single-
cell level.
项目摘要:心房颤动(AF)是最常见的心律不齐,它是主要风险因素
缺血性中风并挑衅发病率和死亡率以及巨大的经济负担。虽然AF有
曾在各种动物中进行研究,胚胎斑马鱼一直是遗传上的,并且在光学上是
透明模型,以研究心脏发育过程中机电耦合。像在人类中一样
动作潜力和随之而来的心肌收缩也是心脏功能的关键指标
斑马鱼。通过其透明度,光学映射一直是研究相互作用的主要手段
在研究AF机制的心脏动作潜力和心肌合同之间。
电气和机械耦合的失调是发病机理和
AF的永久性。斑马鱼中机电脱钩的光学映射是不平凡的,因为它需要
同时记录快速传播电压波和心肌收缩。特别是在殴打中
心脏,快速的心肌收缩很容易模糊图像 - 运动伪影将波叠加
光学图中出现的模式,可以禁止对成像数据进行进一步分析。药理
解偶联已被广泛用于抑制心脏运动。但是,这使得研究机电
耦合不可能。另外,收购后同步方法记录了电影的Z堆栈,每部电影
覆盖至少一个心脏周期。录制完成后,可以重建一个3D心脏周期
通过及时同步电影。但是,这种方法不适合非周期运动,这样
作为AF的不规则心跳。因此,有未满足的需要开发创新的光学技术
快速且不规则地跳动的AF心脏中机电耦合的高速3D映射。
为了解决这个问题,我们建议开发光页面灯场断层扫描(轻饰)技术
对于斑马鱼心脏中的机电耦合的kilohertz 3D成像。我们的方法只有
由于两种新兴技术,灯场层析成像(升降机)和灯罩,最近变得可能成为可能
显微镜,我们都有丰富的经验。我们将将升力与灯页显微镜整合
并启用具有前所未有的体积框架速率的高分辨率3D成像。最终的系统,光
板提升将提供足够的时空分辨率,以充分描述电压波之间的相互作用,
心肌收缩和PITX2C斑马鱼心律不齐模型中的心内血流。我们期望我们的
方法将从单一的电动活动中提出对AF的基本机制的理解
细胞水平。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Liang Gao其他文献
Liang Gao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Liang Gao', 18)}}的其他基金
Kilohertz 3D Optical Mapping of Atrial Fibrillation in Beating Zebrafish Hearts
斑马鱼心脏跳动中心房颤动的千赫兹 3D 光学测绘
- 批准号:
10640170 - 财政年份:2022
- 资助金额:
$ 62.79万 - 项目类别:
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 62.79万 - 项目类别:
相似国自然基金
神经系统中动作电位双稳传导研究
- 批准号:12375033
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:12202147
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
神经元离子通道-动作电位-量子化分泌关系研究
- 批准号:31930061
- 批准年份:2019
- 资助金额:303 万元
- 项目类别:重点项目
仿生味觉自适应柔性纳米电极阵列构建研究
- 批准号:61901469
- 批准年份:2019
- 资助金额:24.5 万元
- 项目类别:青年科学基金项目
相似海外基金
3D Bioprinting of a Bioelectric Cell Bridge for Re-engineering Cardiac Conduction
用于重新设计心脏传导的生物电细胞桥的 3D 生物打印
- 批准号:
10753836 - 财政年份:2023
- 资助金额:
$ 62.79万 - 项目类别:
Mechanisms Underpinning Afterload-Induced Atrial Fibrillation
后负荷诱发心房颤动的机制
- 批准号:
10679796 - 财政年份:2023
- 资助金额:
$ 62.79万 - 项目类别:
Advancing visible light optical coherence tomography in glaucoma detection
推进可见光光学相干断层扫描在青光眼检测中的应用
- 批准号:
10567788 - 财政年份:2023
- 资助金额:
$ 62.79万 - 项目类别:
Mesoscopic microscopy for ultra-high speed and large-scale volumetric brain imaging
用于超高速和大规模脑体积成像的介观显微镜
- 批准号:
10634911 - 财政年份:2023
- 资助金额:
$ 62.79万 - 项目类别: