Kilohertz 3D Optical Mapping of Atrial Fibrillation in Beating Zebrafish Hearts
斑马鱼心脏跳动中心房颤动的千赫兹 3D 光学测绘
基本信息
- 批准号:10510352
- 负责人:
- 金额:$ 62.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAction PotentialsAddressAlgorithmsAnimalsArrhythmiaAtrial FibrillationBlood flowCalciumCardiacCardiac developmentCardiovascular systemCellsClinicalColorColumbidaeContractsCouplingData AnalysesEconomic BurdenEconomicsEmbryoEmerging TechnologiesFacultyFluorescenceFluorescence MicroscopyFunctional disorderGoalsHeartHeart AtriumHumanImageIschemic StrokeKnowledgeLightMLLT3 geneMapsMechanicsMediatingMedicineMembraneMethodsMicroscopeMicroscopyModelingMorbidity - disease rateMorphologic artifactsMotionMovementMyocardialMyocardial ContractionMyocardiumOpticsPalpitationsParalysedPathogenesisPatternPerformancePharmacologyPhenotypeProblem SolvingProcessPropertyRecordsReproductionResearchResearch PersonnelResolutionRisk FactorsSamplingScanningSignal TransductionSpeedSystemTechniquesTestingThree-Dimensional ImagingTimeVentricularX-Ray Computed TomographyZebrafishexperiencefluorophoreheart functionheart motionhemodynamicsinnovationinterestlensmortalitymoviemultiplexed imagingoptical imagingreconstructionspatiotemporalspectrographtemporal measurementtomographytwo-dimensionalvirtualvoltage
项目摘要
Project Summary: Atrial fibrillation (AF) is the most frequent cardiac arrhythmia, and it is a major risk factor for
ischemic stroke and provokes morbidity and mortality along with a significant economic burden. Although AF has
been studied in various animals, the embryonic zebrafish has been the genetically tractable and optically
transparent model to investigate electromechanical coupling during cardiac development. Like in humans, the
action potential and the consequent myocardial contraction are also key indicators of cardiac function in the
zebrafish. By virtual of its transparency, optical mapping has been a primary means to investigate the interplay
between cardiac action potential and myocardial contraction to study the mechanisms of AF.
Dysregulation of electrical and mechanical coupling is a significant factor underlying the pathogenesis and
perpetuation of AF. Optical mapping of electromechanical decoupling in zebrafish is nontrivial because it requires
simultaneous recording of fast propagating voltage waves and myocardial contraction. Particularly in a beating
heart, the rapid myocardial contraction can easily blur the image—the motion artifacts superimpose the wave
patterns appearing in the optical maps and can prohibit further analysis of the imaging data. Pharmacological
uncoupling has been widely used to suppress heart motion. However, this makes studying electromechanical
coupling impossible. Alternatively, post-acquisition synchronization approach records a z-stack of movies, each
covering at least one cardiac cycle. After the recording is completed, one 3D cardiac cycle can be reconstructed
by synchronizing the movies in time. Nonetheless, this method is inapplicable to nonperiodic movements, such
as irregular heartbeats with AF. Therefore, there is an unmet need to develop innovative optical techniques for
high-speed 3D mapping of electromechanical coupling in a rapidly and irregularly beating AF heart.
To solve this problem, we propose to develop a light-sheet light-field tomography (light-sheet LIFT) technique
for kilohertz 3D imaging of electromechanical coupling in zebrafish hearts undergoing AF. Our method has only
recently become possible due to two emerging technologies, light-field tomography (LIFT) and light-sheet
microscopy, both of which we have extensive experience with. We will integrate LIFT with light-sheet microscopy
and enable high-resolution 3D imaging with an unprecedented volumetric frame rate. The resultant system, light-
sheet LIFT, will provide enough spatiotemporal resolution to fully depict the interplay between voltage waves,
myocardial contraction, and intracardiac blood flow in a pitx2c zebrafish arrhythmia model. We expect our
method will advance the understanding of AF's fundamental mechanism from the electrical activities at a single-
cell level.
项目摘要:心房颤动(AF)是最常见的心律失常,也是导致心律失常的主要危险因素。
尽管 AF 具有显着的经济负担,但缺血性中风会引起发病率和死亡率。
经过对各种动物的研究,斑马鱼胚胎在遗传上是易驯化的,并且在光学上是可驯化的。
研究心脏发育过程中机电耦合的透明模型
动作电位和随之而来的心肌收缩也是心脏功能的关键指标
由于斑马鱼的透明度,光学测绘已成为研究相互作用的主要手段。
心脏动作电位和心肌收缩之间的关系,以研究 AF 的机制。
电气和机械耦合失调是发病机制和潜在的重要因素
斑马鱼机电解耦的光学测绘非常重要,因为它需要
同时记录快速传播的电压波和心肌收缩,特别是在跳动时。
心脏,快速的心肌收缩很容易使图像模糊——运动伪影叠加了波
光学图谱中出现的图案可能会阻碍对成像数据的进一步分析。
解耦已被广泛用于抑制心脏运动,但这使得研究机电变得困难。
或者不可能,采集后同步方法记录电影的 z 堆栈,每个电影。
覆盖至少一个心动周期,记录完成后,可以重建一个3D心动周期。
然而,这种方法不适用于非周期性运动,例如
因此,开发创新光学技术来治疗 AF 的需求尚未得到满足。
快速且不规则跳动的 AF 心脏中机电耦合的高速 3D 测绘。
为了解决这个问题,我们建议开发一种光片光场断层扫描(light-sheet LIFT)技术
对于经历 AF 的斑马鱼心脏的机电耦合的千赫兹 3D 成像,我们的方法只有一个。
由于光场断层扫描 (LIFT) 和光片这两种新兴技术,最近成为可能
显微镜,我们在这方面都拥有丰富的经验,我们将把 LIFT 与光片显微镜结合起来。
并以前所未有的体积帧速率实现高分辨率 3D 成像。
LIFT 片将提供足够的时空分辨率来充分描绘电压波之间的相互作用,
pitx2c 斑马鱼心律失常模型中的心肌收缩和心内血流量。
该方法将促进对单次电活动的 AF 基本机制的理解
细胞水平。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Liang Gao其他文献
Liang Gao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Liang Gao', 18)}}的其他基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 62.79万 - 项目类别:
Kilohertz 3D Optical Mapping of Atrial Fibrillation in Beating Zebrafish Hearts
斑马鱼心脏跳动中心房颤动的千赫兹 3D 光学测绘
- 批准号:
10640170 - 财政年份:2022
- 资助金额:
$ 62.79万 - 项目类别:
相似国自然基金
神经系统中动作电位双稳传导研究
- 批准号:12375033
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
神经元离子通道-动作电位-量子化分泌关系研究
- 批准号:31930061
- 批准年份:2019
- 资助金额:303 万元
- 项目类别:重点项目
仿生味觉自适应柔性纳米电极阵列构建研究
- 批准号:61901469
- 批准年份:2019
- 资助金额:24.5 万元
- 项目类别:青年科学基金项目
晚钠电流通过CaMK-II调节跨壁胞内钙离子分布在心肌缺血再灌注心律失常中的作用及机制研究
- 批准号:81900300
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
3D Bioprinting of a Bioelectric Cell Bridge for Re-engineering Cardiac Conduction
用于重新设计心脏传导的生物电细胞桥的 3D 生物打印
- 批准号:
10753836 - 财政年份:2023
- 资助金额:
$ 62.79万 - 项目类别:
Mechanisms Underpinning Afterload-Induced Atrial Fibrillation
后负荷诱发心房颤动的机制
- 批准号:
10679796 - 财政年份:2023
- 资助金额:
$ 62.79万 - 项目类别:
Advancing visible light optical coherence tomography in glaucoma detection
推进可见光光学相干断层扫描在青光眼检测中的应用
- 批准号:
10567788 - 财政年份:2023
- 资助金额:
$ 62.79万 - 项目类别:
Mesoscopic microscopy for ultra-high speed and large-scale volumetric brain imaging
用于超高速和大规模脑体积成像的介观显微镜
- 批准号:
10634911 - 财政年份:2023
- 资助金额:
$ 62.79万 - 项目类别: