Ultrasensitive acoustic reporter proteins with engineered rupture-resistant shells
具有工程抗破裂外壳的超灵敏声学报告蛋白
基本信息
- 批准号:10511817
- 负责人:
- 金额:$ 22.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-17 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AcousticsAdoptionAlanineAmino AcidsAnimal ModelAwardBenchmarkingBiological ProcessBiologyBiomedical ResearchCaenorhabditis elegansCarbamatesCell TherapyCellsChemicalsChemistryDetectionDiagnosisDiagnosticDiseaseElementsEngineeringEnsureEscherichia coliEvaluationExploratory/Developmental GrantFunding MechanismsGasesGene ExpressionGenerationsGenesGenetic CodeGoalsHumanImageLightLysineMammalian CellMapsMass Spectrum AnalysisMeasurementMeasuresMechanicsMethodsMicrobeMicrobubblesModelingMonitorMovementMutagenesisNamesNanostructuresOrganismOutcomePenetrationPhaseProcessPropertyProtein EngineeringProteinsProtocols documentationReporterReporter GenesResearch PersonnelResistanceRodentRodent ModelRuptureScientistSignal PathwaySiteSolidStressStructural ModelsStructureTechnologyTensile StrengthTherapeuticTimeTissuesUltrasonographyVesicleVisualizationbasecellular imagingcrosslinkcrystallinitydesigndisease diagnosisfluorescence imaginghemodynamicshigh riskimaging agentimaging biomarkerimprovedin vitro testinginnovationinterdisciplinary approachmechanical propertiesnew technologynon-invasive imagingparticlepressurescreeningsimulationsubmicronsynthetic biologytargeted imagingtechnology developmenttime usetoolultrasound
项目摘要
Project Summary / Abstract
The ability to image specific gene expression and cellular signaling pathways has long been a powerful tool for
scientists, and the methods to achieve this goal, such as the fluorescent reporter genes, are widely used
nowadays across different fields of biomedicine. However, the penetration depth of light has limited the use of
fluorescent reporter genes in animal models and cell-based therapies in humans. To this end. a group of gas-
filled protein nanostructures named gas vesicles (GVs) were recently introduced as the acoustic reporter genes
and enabled, for the first time, the use of ultrasound imaging to visualize specific gene expression in cells located
at centimeter-deep tissue. GVs are sub-micron particles originally evolved in photosynthetic microbes to achieve
cellular flotation, and expectedly, these wildtype GVs do not possess the correct properties that can maximize
their detection by ultrasound. This limitation on imaging sensitivity is perhaps the biggest hurdle currently facing
the application of the first-generation acoustic reporter genes. In this proposal, we aim to introduce the second-
generation acoustic reporter genes by innovating the mechanical properties of the protein shell. In Aim 1, we will
leverage the Genetic Code Expansion technology to achieve site-specific crosslinking among the monomeric
shell proteins. This is to recognize that the inward buckling of the protein shell holds the key to the sensitive
detection of these acoustic protein nanostructures but often leads to the rupture of the wildtype GV shell, and a
systematic crosslinking will substantially increase the tensile strength of these protein shells. Specifically, we will
systematically search sites that allow the incorporation of non-canonical amino acid and lysine for proximity-
induced chemistry, and this search will be performed under the rational guidance of the structural models. In
parallel to Aim 1, we will develop finite-element modeling and acoustic measurement method in Aim 2 to
understand the effect of crosslinking on the mechanical properties of the shell, which will establish benchmark
values and aims for the design of the protein nanostructures. In Aim 3, we seek to establish sensitivity
enhancement of these rupture-resistant acoustic protein nanostructures in a rodent model. Our interdisciplinary
approach merges synthetic biology, chemical biology, acoustics, and solid mechanics, and if successful, this
high-risk high-gain project will lead to a new generation of ultrasensitive acoustic reporter genes that broaden
the technology to many therapeutic and diagnostic applications, especially in the functional tracking of cell-based
therapies and targeted imaging of biomarkers.
项目概要/摘要
对特定基因表达和细胞信号通路进行成像的能力长期以来一直是一个强大的工具
科学家们,实现这一目标的方法,例如荧光报告基因,被广泛使用
目前已涉足生物医学的不同领域。然而,光的穿透深度限制了其使用
动物模型中的荧光报告基因和人类细胞疗法。为此。一组气体-
最近引入了名为气体囊泡(GV)的填充蛋白质纳米结构作为声学报告基因
并首次使用超声成像来可视化位于细胞中的特定基因表达
在厘米深的组织中。 GV 是亚微米颗粒,最初是在光合微生物中进化来实现
细胞浮选,并且预期这些野生型 GV 不具备可以最大化的正确特性
通过超声波检测它们。成像灵敏度的限制可能是目前面临的最大障碍
第一代声学报告基因的应用。在这个提案中,我们的目标是引入第二个——
通过创新蛋白质壳的机械特性来生成声学报告基因。在目标 1 中,我们将
利用遗传密码扩展技术实现单体之间的位点特异性交联
壳蛋白。这是为了认识到蛋白质外壳的向内屈曲是敏感的关键
检测这些声学蛋白纳米结构,但通常会导致野生型 GV 外壳的破裂,并且
系统交联将大大增加这些蛋白质壳的拉伸强度。具体来说,我们将
系统地搜索允许掺入非规范氨基酸和赖氨酸的位点以进行接近-
诱导化学,这种搜索将在结构模型的合理指导下进行。在
与目标 1 并行,我们将在目标 2 中开发有限元建模和声学测量方法,以
了解交联对壳机械性能的影响,这将建立基准
蛋白质纳米结构设计的价值和目标。在目标 3 中,我们寻求建立敏感性
在啮齿动物模型中增强这些抗破裂声学蛋白质纳米结构。我们的跨学科
方法融合了合成生物学、化学生物学、声学和固体力学,如果成功的话,这个
高风险高收益项目将产生新一代超灵敏声学报告基因,拓宽
该技术适用于许多治疗和诊断应用,特别是基于细胞的功能跟踪
生物标志物的治疗和靶向成像。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
George J Lu其他文献
George J Lu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('George J Lu', 18)}}的其他基金
Ultrasensitive acoustic reporter proteins with engineered rupture-resistant shells
具有工程抗破裂外壳的超灵敏声学报告蛋白
- 批准号:
10684322 - 财政年份:2022
- 资助金额:
$ 22.9万 - 项目类别:
Sonomagnetic Imaging and Sonomechanical Control of Biological Processes in Deep Tissues
深层组织生物过程的声磁成像和声机械控制
- 批准号:
10471365 - 财政年份:2020
- 资助金额:
$ 22.9万 - 项目类别:
Sonomagnetic Imaging and Sonomechanical Control of Biological Processes in Deep Tissues
深层组织生物过程的声磁成像和声机械控制
- 批准号:
10260761 - 财政年份:2020
- 资助金额:
$ 22.9万 - 项目类别:
Sonomagnetic Imaging and Sonomechanical Control of Biological Processes in Deep Tissues
深层组织生物过程的声磁成像和声机械控制
- 批准号:
10267208 - 财政年份:2020
- 资助金额:
$ 22.9万 - 项目类别:
Sonomagnetic Imaging and Sonomechanical Control of Biological Processes in Deep Tissues
深层组织生物过程的声磁成像和声机械控制
- 批准号:
9750745 - 财政年份:2018
- 资助金额:
$ 22.9万 - 项目类别:
相似国自然基金
采用积分投影模型解析克隆生长对加拿大一枝黄花种群动态的影响
- 批准号:32301322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
山丘区农户生计分化对水保措施采用的影响及其调控对策
- 批准号:42377321
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
金属有机骨架材料在环境VOCs处理过程中采用原位电子顺磁共振自旋探针检测方法的研究
- 批准号:22376147
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
High-throughput thermodynamic and kinetic measurements for variant effects prediction in a major protein superfamily
用于预测主要蛋白质超家族变异效应的高通量热力学和动力学测量
- 批准号:
10752370 - 财政年份:2023
- 资助金额:
$ 22.9万 - 项目类别:
Novel Sample Introduction Methodologies for Molecular Rotational Resonance (MRR) Spectroscopy
分子旋转共振 (MRR) 光谱的新样品引入方法
- 批准号:
10603098 - 财政年份:2023
- 资助金额:
$ 22.9万 - 项目类别:
Ultrasensitive acoustic reporter proteins with engineered rupture-resistant shells
具有工程抗破裂外壳的超灵敏声学报告蛋白
- 批准号:
10684322 - 财政年份:2022
- 资助金额:
$ 22.9万 - 项目类别:
A Randomized Controlled Trial of Prophylaxis with Direct-acting Antivirals for Kidney Transplantation from Hepatitis C virus-infected donor to Uninfected Recipients (PREVENT-HCV)
直接作用抗病毒药物预防丙型肝炎病毒感染供者肾移植至未感染受者的随机对照试验 (PREVENT-HCV)
- 批准号:
10597168 - 财政年份:2022
- 资助金额:
$ 22.9万 - 项目类别:
A Randomized Controlled Trial of Prophylaxis with Direct-acting Antivirals for Kidney Transplantation from Hepatitis C virus-infected donor to Uninfected Recipients (PREVENT-HCV)
直接作用抗病毒药物预防丙型肝炎病毒感染供者肾移植至未感染受者的随机对照试验 (PREVENT-HCV)
- 批准号:
10405358 - 财政年份:2022
- 资助金额:
$ 22.9万 - 项目类别: