Circadian regulation of NAMPT in the heart
心脏 NAMPT 的昼夜节律调节
基本信息
- 批准号:10509597
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-22 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:BindingBiological ProcessBiologyBrainCardiacCardiac MyocytesCardiovascular DiseasesCardiovascular systemCellular biologyChromatin LoopChronotherapyClinical TrialsComplexDataDependenceDependovirusDiseaseEctopic ExpressionElementsEnhancersEnzymesFibroblastsFoundationsFunding OpportunitiesGene ExpressionGene Expression RegulationGenesGenetic Enhancer ElementGenetic TranscriptionGenus HippocampusGoalsGuide RNAHeartHomeostasisHumanIn VitroIntronsIschemiaKnock-inKnockout MiceLifeLightLiverLongevityMammalian CellMeasuresMetabolismMethodsModelingMolecularMusMuscleMyocardialMyocardial IschemiaNiacinamideNicotinamide adenine dinucleotidePathway interactionsPeriodicityPhasePhysiologicalPhysiologyPlayPre-Clinical ModelPredispositionProteinsRegulationReperfusion InjuryReperfusion TherapyResistanceRoleSiteSlaveSupplementationTechnologyTestingTetracyclinesTherapeutic UsesTimeTissuesUp-RegulationWorkZinc Fingersbasebiological systemscardiovascular healthchromosome conformation capturecircadiancircadian regulationdesignheart metabolismin vivoinduced pluripotent stem cellinsightmouse modelnicotinamide phosphoribosyltransferasenovelprime editingprime editorpromoterresilienceresponsesmall moleculestem cell differentiationtherapeutic evaluationtooltranscription factor
项目摘要
Project Summary
Nicotinamide or NAD+ is one of the most essential small molecules in mammalian cells. Its roles in
cardiovascular health and longevity are increasingly being appreciated. As a result, its therapeutic use is being
tested in numerous clinical trials. Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme
of the NAD+ salvage pathway and determines NAD+ level in the heart. Both NAD+ levels and NAMPT have a
strong circadian oscillation in the heart. The molecular mechanism for NAD+ circadian regulation is only partially
understood. The physiological significance of oscillating NAD+ has not been directly tested in preclinical models.
Thus, this information has not been incorporated in any of the existing clinical trials.
Our goal in this application is to determine the molecular mechanism of NAMPT circadian regulation and
establish the physiological significance of oscillatory NAD+ in the heart. Based on our preliminary data, we
hypothesize that co-occupancy of BAML1 and KLF15 in a promoter-enhancer loop is required for optimal
upregulation of Nampt in a time-of-a-day dependent fashion. This coordinated circadian regulation is key for
oscillatory myocardial NAD+, cardiac metabolism and I/R resistance. To test this central hypothesis, we designed
two complementary aims to first determine the molecular mechanism of NAMPT circadian regulation in both
induced pluripotent stem cell differentiation cardiomyocytes (iPSC-CM) and mouse hearts. Novel prime editing
technology will be used to generate cis-element deleting iPSC-CM and mouse models in addition to traditional
cardiac KO mice. In the second aim, we will use our novel tetracycline inducible adeno-associated virus (AAV
system) to test the physiological effect of in-phase, anti-phase and constant expression of NAMPT in cardiac
metabolism and resistance to ischemia/reperfusion injury.
Successful completion of the proposed work will allow us to (1) establish the precise molecular
mechanism of circadian oscillatory regulation of cardiac NAD+, and (2) understand the functional significance of
oscillatory Nampt expression in the heart. This will further shed light on the molecular mechanism of tissue
specific circadian gene regulation, which is very poorly appreciated at this time. We established the first cardiac
“slave” clock (KLF15) and here we first proposed the core clock-slave clock promoted chromatin looping model,
in contrast to the linear core clock>slave clock>targets model. In addition to the conceptual novelty, we generated
novel prime editing tools that allow precise editing in iPSC-CM as well as in a special-temporal regulated fashion
in vivo. We also designed novel method to first time test the physiological consequence of oscillatory expression
versus constant expression.
Our proposed work directly responds to the current Funding Opportunity PA19-0-49, “studying normal
biology including homeostatic regulation of biological systems and the phenomenon of resilience”, “defining the
basic pathways that underlie effects of circadian function, synchronization and harmonization”.
项目概要
烟酰胺或 NAD+ 是哺乳动物细胞中最重要的小分子之一。
心血管健康和长寿越来越受到重视,因此,其治疗用途正在受到重视。
烟酰胺磷酸核糖转移酶 (NAMPT) 是经过大量临床试验测试的限速酶。
NAD+ 挽救途径并决定心脏中的 NAD+ 水平 NAD+ 水平和 NAMPT 都有一个共同点。
心脏中强烈的昼夜节律振荡 NAD+昼夜节律调节的分子机制仅是部分的。
尚未在临床前模型中直接测试振荡 NAD+ 的生理意义。
因此,该信息尚未纳入任何现有的临床试验中。
我们在此应用中的目标是确定 NAMPT 昼夜节律调节的分子机制和
根据我们的初步数据,我们确定了振荡 NAD+ 在心脏中的生理意义。
研究表明,BAML1 和 KLF15 在启动子-增强子环中的共同占据是最佳效果所必需的
Nampt 以一天中的时间依赖性方式上调,这种协调的昼夜节律调节是关键。
振荡心肌 NAD+、心脏代谢和 I/R 抵抗 为了检验这一中心假设,我们设计了。
两个互补的目标首先确定 NAMPT 昼夜节律调节的分子机制
诱导多能干细胞分化心肌细胞 (iPSC-CM) 和小鼠心脏。
除了传统的技术外,技术还将用于生成顺式元件删除 iPSC-CM 和小鼠模型
在第二个目标中,我们将使用我们的新型四环素诱导型腺相关病毒(AAV)。
系统)测试NAMPT同相、反相和恒定表达对心脏的生理效应
代谢和对缺血/再灌注损伤的抵抗力。
成功完成拟议的工作将使我们能够(1)建立精确的分子
心脏 NAD+ 的昼夜节律振荡调节机制,以及 (2) 了解
心脏中的振荡 Nampt 表达将进一步阐明组织的分子机制。
特定的昼夜节律基因调节,目前我们对此还知之甚少。
“从”时钟(KLF15),在这里我们首先提出了核心时钟-从时钟促进染色质循环模型,
与线性核心时钟>从时钟>目标模型相比,除了概念上的新颖性之外,我们还生成了。
新颖的主要编辑工具,允许在 iPSC-CM 中以及以特殊时间调节方式进行精确编辑
我们还设计了新的方法来首次测试振荡表达的生理后果。
与恒定表达。
我们提出的工作直接响应当前的资助机会 PA19-0-49,“研究正常
生物学,包括生物系统的稳态调节和复原力现象”,“定义
影响昼夜节律功能、同步和协调的基本途径”。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lilei Zhang其他文献
Lilei Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lilei Zhang', 18)}}的其他基金
Deciphering the role of a circadian lncRNA in cardiac remodeling
解读昼夜节律lncRNA在心脏重塑中的作用
- 批准号:
10599336 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Deciphering the role of a circadian lncRNA in cardiac remodeling
解读昼夜节律lncRNA在心脏重塑中的作用
- 批准号:
10442269 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Transcriptional regulation of cardiac pathological remodeling by REV-ERBα
REV-ERBα 对心脏病理重塑的转录调节
- 批准号:
9927666 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Transcriptional regulation of cardiac pathological remodeling by REV-ERBα
REV-ERBα 对心脏病理重塑的转录调节
- 批准号:
10171416 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Transcriptional regulation of cardiac pathological remodeling by REV-ERBα
REV-ERBα 对心脏病理重塑的转录调节
- 批准号:
10447818 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Transcriptional regulation of cardiac pathological remodeling by REV-ERBα
REV-ERBα 对心脏病理重塑的转录调节
- 批准号:
10610880 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Role of KLF15 in Circadian Regulation of Cardiac Ischemia
KLF15 在心脏缺血昼夜节律调节中的作用
- 批准号:
9032864 - 财政年份:2016
- 资助金额:
$ 20万 - 项目类别:
Role of KLF15 in Circadian Regulation of Cardiac Ischemia
KLF15 在心脏缺血昼夜节律调节中的作用
- 批准号:
9204850 - 财政年份:2016
- 资助金额:
$ 20万 - 项目类别:
相似国自然基金
水稻土天然有机质还原偶联氨厌氧氧化过程及其微生物学机制
- 批准号:42377289
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
脂质纳米载体体内过程和生物学效应的机体调控机制及智能递送
- 批准号:32330058
- 批准年份:2023
- 资助金额:215 万元
- 项目类别:重点项目
家蚕Osiris蛋白在丝蛋白分泌和茧丝性能形成过程中的生物学功能研究
- 批准号:32372949
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
长期施肥红壤性水稻土团聚体解聚过程中真菌残体周转的微生物学机制
- 批准号:32360799
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
骨细胞Laplace压力调控骨重建过程及超声波治疗骨折的力学生物学机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
The mechanism of CELF1 upregulation and its role in the pathogenesis of Myotonic Dystrophy Type 1
CELF1上调机制及其在强直性肌营养不良1型发病机制中的作用
- 批准号:
10752274 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Maternal immune activation remodeling of offspring glycosaminoglycan sulfation patterns during neurodevelopment
神经发育过程中后代糖胺聚糖硫酸化模式的母体免疫激活重塑
- 批准号:
10508305 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Molecular basis of glycan recognition by T and B cells
T 和 B 细胞识别聚糖的分子基础
- 批准号:
10549648 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
The role of core circadian regulator Bmal1 in axonal regeneration and nerve repair
核心昼夜节律调节因子 Bmal1 在轴突再生和神经修复中的作用
- 批准号:
10677932 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Exploring how cells generate and release distinct subpopulations of dense-core vesicles
探索细胞如何产生和释放不同的致密核心囊泡亚群
- 批准号:
10679873 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别: