Evaluating Effectiveness and Implementation of a Risk Model for Suicide Prevention Across Health Systems

评估跨卫生系统自杀预防风险模型的有效性和实施

基本信息

项目摘要

PROJECT SUMMARY/ABSTRACT: Suicide is a major public health concern in the United States; nearly 50,000 individuals die by suicide annually and almost 1.5 million attempt suicide. To date, identification of individuals at risk for suicide has relied on suicide risk screening practices, including using a variety of self- report instruments. However, sensitivity of these measures are only moderate; more precise tools for identifying patients at risk for suicide are needed. Suicide risk models, developed by our team, incorporate health records data and historical self-report screening questionnaire responses to improve accuracy of risk prediction. Our models have outperformed traditional clinical screening and similar risk models for adults receiving care in outpatient mental health specialty settings. However, while accurate, they have not been evaluated in real world care; whether the models actually increase identification or result in patients receiving more suicide prevention services, fewer crisis services, or making fewer suicide attempts is unknown. There is substantial clinical interest in implementing suicide risk models but little scientific evidence about the effectiveness of these models in real world settings compared to standard screening practices alone. Additionally, there is almost no guidance for their implementation in healthcare. The proposed project leverages the NIMH-funded Mental Health Research Network (MHRN), a collaboration of large health systems with established clinical data infrastructure to support multi-site studies. MHRN members Henry Ford Health System, Kaiser Permanente Northwest, and HealthPartners will participate in this project and collectively serve >170,000 behavioral health patients per year. The patient populations are diverse, including thousands of individuals with Medicaid and Medicare. Each of these systems has implemented a suicide prevention care model in their behavioral health departments, including robust suicide risk screening and assessment processes. However, none of these systems has implemented a suicide risk model. The proposed project includes a pragmatic trial approach with randomization of behavioral health clinics across the three participating health systems. It is innovative because it seeks to implement an MHRN suicide risk model (intervention) into each system's existing suicide prevention care model (usual care) to increase the reach and effectiveness of the suicide prevention care models. Sites will receive implementation planning support based on stakeholder feedback from preliminary studies and deliverables include an implementation planning tool kit to facilitate spread. This high-impact study has important clinical implications as health systems consider whether it makes sense to enhance their existing suicide prevention care models with a suicide risk model. It is timely because many health systems are advancing toward suicide risk model implementation without evidence to support this innovation.
项目摘要/摘要:自杀是美国的主要公共卫生问题;几乎 每年有50,000人因自杀而死,近150万人自杀。迄今为止,识别 有自杀风险的人依靠自杀风险筛查措施,包括使用各种自我 报告工具。但是,这些措施的敏感性仅为中等。更精确的工具 需要确定有自杀风险的患者。由我们的团队开发的自杀风险模型合并 健康记录数据和历史自我报告筛查问卷回答以提高风险的准确性 预言。我们的模型表现优于传统的临床筛查和成人的类似风险模型 在门诊精神健康专业环境中接受护理。但是,虽然准确,但他们还没有 在现实世界中评估;这些模型是实际增加识别还是导致患者接受 尚不清楚更多的自杀预防服务,更少的危机服务或更少的自杀企图。那里 在实施自杀风险模型方面具有很大的临床兴趣,但几乎没有科学证据 与仅标准筛选实践相比,这些模型在现实世界中的有效性。 此外,几乎没有指导他们在医疗保健中的实施。拟议的项目 利用NIMH资助的心理健康研究网络(MHRN),这是大型健康的合作 具有既定临床数据基础架构的系统,以支持多站点研究。 MHRN成员亨利 福特卫生系统,Kaiser Permanente Northwest和HealthPartners将参加该项目, 每年共同服务> 170,000名行为健康患者。患者人群多样化, 包括成千上万的医疗补助和医疗保险。这些系统中的每一个都实现了 其行为卫生部门的自杀预防护理模型,包括强大的自杀风险筛查 和评估过程。但是,这些系统都没有实施自杀风险模型。这 拟议的项目包括一种务实的试验方法,与行为健康诊所的随机分配 三个参与的卫生系统。它具有创新性,因为它试图实施MHRN自杀风险 模型(干预)进入每个系统现有的自杀预防护理模型(通常的护理),以增加 自杀预防护理模型的覆盖范围和有效性。网站将收到实施计划 基于初步研究和可交付成果的利益相关者反馈的支持包括实施 计划工具套件以促进传播。这项高影响力的研究具有重要的临床意义 系统考虑使用A增强现有的自杀预防护理模型是否有意义 自杀风险模型。这是及时的,因为许多卫生系统正在朝着自杀风险模型前进 实施没有证据支持这项创新。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

BobbiJo H. Yarborough其他文献

BobbiJo H. Yarborough的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('BobbiJo H. Yarborough', 18)}}的其他基金

Evaluating Effectiveness and Implementation of a Risk Model for Suicide Prevention Across Health Systems
评估跨卫生系统自杀预防风险模型的有效性和实施
  • 批准号:
    10689266
  • 财政年份:
    2022
  • 资助金额:
    $ 81.66万
  • 项目类别:
Stakeholder Perspectives on Implementing Suicide Risk Prediction Models
利益相关者对实施自杀风险预测模型的看法
  • 批准号:
    10197808
  • 财政年份:
    2019
  • 资助金额:
    $ 81.66万
  • 项目类别:
Stakeholder Perspectives on Implementing Suicide Risk Prediction Models
利益相关者对实施自杀风险预测模型的看法
  • 批准号:
    10021736
  • 财政年份:
    2019
  • 资助金额:
    $ 81.66万
  • 项目类别:
Predictive modeling: the role of opioid use in suicide risk
预测模型:阿片类药物的使用在自杀风险中的作用
  • 批准号:
    9755394
  • 财政年份:
    2018
  • 资助金额:
    $ 81.66万
  • 项目类别:
Predictive modeling: the role of opioid use in suicide risk
预测模型:阿片类药物的使用在自杀风险中的作用
  • 批准号:
    9927866
  • 财政年份:
    2018
  • 资助金额:
    $ 81.66万
  • 项目类别:
Understanding Disparities in Preventive Services for Patients with Mental Illness
了解精神疾病患者预防服务的差异
  • 批准号:
    8895407
  • 财政年份:
    2012
  • 资助金额:
    $ 81.66万
  • 项目类别:

相似国自然基金

采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
  • 批准号:
    32371047
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
破解老年人数字鸿沟:老年人采用数字技术的决策过程、客观障碍和应对策略
  • 批准号:
    72303205
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
通过抑制流体运动和采用双能谱方法来改进烧蚀速率测量的研究
  • 批准号:
    12305261
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
采用多种稀疏自注意力机制的Transformer隧道衬砌裂缝检测方法研究
  • 批准号:
    62301339
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
  • 批准号:
    72304103
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Optimization of electromechanical monitoring of engineered heart tissues
工程心脏组织机电监测的优化
  • 批准号:
    10673513
  • 财政年份:
    2023
  • 资助金额:
    $ 81.66万
  • 项目类别:
The RaDIANT Health Systems Intervention for Equity in Kidney Transplantation
Radiant 卫生系统干预肾移植的公平性
  • 批准号:
    10681998
  • 财政年份:
    2023
  • 资助金额:
    $ 81.66万
  • 项目类别:
Regulation of human tendon development and regeneration
人体肌腱发育和再生的调节
  • 批准号:
    10681951
  • 财政年份:
    2023
  • 资助金额:
    $ 81.66万
  • 项目类别:
Toward Accurate Cardiovascular Disease Prediction in Hispanics/Latinos: Modeling Risk and Resilience Factors
实现西班牙裔/拉丁裔的准确心血管疾病预测:风险和弹性因素建模
  • 批准号:
    10852318
  • 财政年份:
    2023
  • 资助金额:
    $ 81.66万
  • 项目类别:
The impact of Medicaid expansion on the rural mortality penalty in the United States
医疗补助扩大对美国农村死亡率的影响
  • 批准号:
    10726695
  • 财政年份:
    2023
  • 资助金额:
    $ 81.66万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了