Defining cytoskeletal mechanisms driving cell motility in Naegleria

定义耐格里虫细胞驱动细胞运动的细胞骨架机制

基本信息

  • 批准号:
    10510010
  • 负责人:
  • 金额:
    $ 9.71万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-25 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY/ABSTRACT Although actin is highly conserved throughout eukarya, the mechanisms used to regulate its assembly and disassembly vary across phyla. Precisely timed and placed actin assembly orchestrates nearly every cellular process, including cell migration. While actin-driven cell migration has been defined in some detail in animal cells, it is unknown if diverse eukaryotic pathogens operate using the same set of rules. This proposal will address the hypothesis that there are conserved principles of cell migration by investigating Naegleria, which diverged from the “yeast-to-human” lineage over a billion years ago. Specifically, this work will define the contributions of the cytoskeleton to cell crawling in the “brain-eating amoeba” Naegleria fowleri: a pathogen that crawls into and within the brain, causing a deadly form of meningitis for which there are no reliable treatments. Dr. Velle’s initial postdoctoral research using the commonly-used, non-pathogenic model system Naegleria gruberi highlights the potential for universal rules of motility; N. gruberi crawls on flat surfaces using thin, actin- based protrusions assembled by proteins called the Arp2/3 complex. This actin and Arp2/3 based mechanism is also how animal cells crawl on flat surfaces. However, outside of laboratory conditions, cells rarely—if ever—crawl on flat, uniform surfaces. Animal cells are well-known to switch to a different mode of motility when crawling through complex, restrictive environments, but this has not been tested in Naegleria. Because N. fowleri crawl through narrow channels in the skull and into the brain, despite no known chemotactic signals, dissecting cell migration in restrictive environments is essential for understanding disease. Therefore, Aim 1 will determine mechanisms of cell crawling under confinement at the level of cell behavior. Aim 2 will focus on the actin networks in cells; while the protrusions driving N. gruberi migration on flat surfaces look similar to those of animal cells, defining the actin architecture using Platinum Replica Electron Microscopy (PREM) will reveal if the ultrastructure is conserved. This aim will also provide critical training to complement Dr. Velle’s background in light microscopy. The world expert in PREM, Dr. Svitkina, will provide this training as a member of the scientific advisory committee. Aim 3 will use biochemistry—a technique the applicant has no prior training in—to examine the upstream mechanisms of Arp2/3 complex activation. Dr. Velle has recruited Dr. Bruce Goode, an expert actin biochemist, for this training. Because the leading labs in the field of cell migration frequently employ both microscopy and in vitro actin biochemistry, the proposed training in PREM and biochemistry will ensure the applicant is skilled in the techniques required for success. Dr. Velle has also recruited Dr. Matt Welch, an actin expert, Dr. Meg Titus, who has expertise in actin and amoebae, and Dr. Jim Morris, an expert in N. fowleri, to her scientific advisory committee to provide scientific and career mentoring. Collectively, the proposed work will provide the technical training, and career mentorship required to launch Dr. Velle’s career as an independent investigator with a research program focused on Naegleria’s migration.
项目概要/摘要 尽管肌动蛋白在真核生物中高度保守,但用于调节其组装和组装的机制 精确定时和放置的肌动蛋白组装协调几乎每个细胞的分解。 肌动蛋白驱动的细胞迁移已在动物中得到了一些详细的定义。 细胞,目前尚不清楚不同的真核病原体是否使用相同的规则进行操作。 通过研究 Naegleria 来解决细胞迁移存在保守原理的假设, 具体而言,这项工作将定义与十亿多年前的“酵母到人类”谱系的分歧。 细胞骨架对“食脑变形虫”福氏耐格里阿米巴细胞爬行的贡献:一种病原体 它爬入大脑并在大脑内引起一种致命的脑膜炎,目前还没有可靠的治疗方法 Velle 博士的最初博士后研究使用常用的非致病性模型系统。 格鲁伯氏耐格里虫(Naegleria gruberi)强调了格鲁伯氏耐格里虫(Naegleria gruberi)在平坦表面上爬行的通用运动规则的潜力; 薄的、基于肌动蛋白的突起由称为 Arp2/3 复合物的蛋白质组装而成,这种肌动蛋白和 Arp2/3 为基础。 机制也是动物细胞如何在平面上爬行。但是,在实验室条件之外,细胞。 众所周知,动物细胞很少(如果有的话)会切换到不同的模式。 在复杂、限制性的环境中爬行时具有运动能力,但这尚未在耐格里虫中进行过测试。 因为福氏猪笼草爬行穿过颅骨中的狭窄通道并进入大脑,尽管目前尚不清楚 趋化信号,剖析限制性环境中的细胞迁移对于了解疾病至关重要。 因此,目标1将在细胞行为水平上确定细胞在限制下爬行的机制。 目标 2 将重点关注细胞中的肌动蛋白网络;而驱动格鲁伯氏菌在平面上迁移的突起 看起来与动物细胞相似,使用铂金复制品电子显微镜定义了肌动蛋白结构 (PREM)将揭示超微结构是否得到保存,这一目标还将提供关键的培训来补充。 Velle 博士拥有光学显微镜方面的背景,PREM 领域的世界专家 Svitkina 博士将作为该培训的提供者。 目标 3 的科学顾问委员会成员将使用生物化学——申请人没有这项技术。 Velle 博士招募了之前的培训人员,以检查 Arp2/3 复合物激活的上游机制。 肌动蛋白生物化学专家 Bruce Goode 博士参加了本次培训,因为细胞领域的领先实验室。 迁移经常使用显微镜和体外肌动蛋白生物化学,建议在 PREM 中进行培训 生物化学将确保申请人熟练掌握成功所需的技术。 招募了肌动蛋白专家 Matt Welch 博士、肌动蛋白和变形虫专业知识的 Meg Titus 博士以及 Jim 博士 莫里斯是福氏猪笼草专家,她向她的科学顾问委员会提供科学和职业指导。 总的来说,拟议的工作将提供启动博士所需的技术培训和职业指导。 Velle 的职业生涯是作为一名独立调查员,其研究项目重点关注耐格里变形虫的迁徙。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Katrina Velle其他文献

Katrina Velle的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Katrina Velle', 18)}}的其他基金

Defining cytoskeletal mechanisms driving cell motility in Naegleria
定义耐格里虫细胞驱动细胞运动的细胞骨架机制
  • 批准号:
    10657784
  • 财政年份:
    2022
  • 资助金额:
    $ 9.71万
  • 项目类别:
Defining actin-based mechanisms driving basic cell functions and pathogenic behaviors in Naegleria
定义基于肌动蛋白的机制,驱动耐格里虫的基本细胞功能和致病行为
  • 批准号:
    10213600
  • 财政年份:
    2020
  • 资助金额:
    $ 9.71万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Identification of regulators in the vertebrate egg-to-embryo transition
脊椎动物卵到胚胎转变过程中调节因子的鉴定
  • 批准号:
    10371345
  • 财政年份:
    2022
  • 资助金额:
    $ 9.71万
  • 项目类别:
Identification of regulators in the vertebrate egg-to-embryo transition
脊椎动物卵到胚胎转变过程中调节因子的鉴定
  • 批准号:
    10663791
  • 财政年份:
    2022
  • 资助金额:
    $ 9.71万
  • 项目类别:
Defining the Role of ROR2 in Right Ventricular Failure Pathogenesis
定义 ROR2 在右心室衰竭发病机制中的作用
  • 批准号:
    10463790
  • 财政年份:
    2021
  • 资助金额:
    $ 9.71万
  • 项目类别:
Determining genetic mechanisms that drive in vitro hematopoiesis
确定驱动体外造血的遗传机制
  • 批准号:
    10453654
  • 财政年份:
    2021
  • 资助金额:
    $ 9.71万
  • 项目类别:
Determining genetic mechanisms that drive in vitro hematopoiesis
确定驱动体外造血的遗传机制
  • 批准号:
    10657623
  • 财政年份:
    2021
  • 资助金额:
    $ 9.71万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了