Computational Investigations of the Mechanisms Behind Microtubule Catastrophe
微管灾难背后机制的计算研究
基本信息
- 批准号:10515664
- 负责人:
- 金额:$ 3.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:Active SitesAffectBehaviorBindingBinding SitesCatalysisCell divisionCollaborationsCommunitiesComputational TechniqueCouplingCryoelectron MicroscopyCytoskeletonDataDevelopmentDrug TargetingEukaryotic CellFeedbackFree EnergyFutureGeometryGrainGuanosine DiphosphateGuanosine TriphosphateHeadHybridsHydrolysisIntracellular TransportInvestigationKnowledgeLeadLondonMapsMethodologyMethodsMicrotubule-Associated ProteinsMicrotubulesMitosisMitotic spindleModelingMolecularMolecular ConformationMutagenesisNaturePaclitaxelPathway interactionsPharmaceutical PreparationsPoisonPolymersProcessPropertyReactionRecombinantsResearch PersonnelResolutionRiceRoleRouteSamplingSeriesSiteStimulusStressStructureSurfaceTailTechniquesTestingTexasTherapeuticTubeTubulinUncertaintyUniversitiesVinblastineWorkalpha Tubulinbeta Tubulincell motilitychemotherapeutic agentcomputing resourcesdesignexperienceexperimental studyinorganic phosphatemicroscopic imagingmolecular mechanicsmutantnovelpolymerizationquantumreaction rateresponsesimulationtargeted treatmenttheories
项目摘要
PROJECT SUMMARY
Microtubules (MTs) constitute the largest components of the eukaryotic cytoskeleton and facilitate a plethora of
diverse functions including intracellular transport, cellular motility, and, cell division. During mitosis, MTs
aggregate to form the mitotic spindle, making them a potent drug target for many successful chemotherapeutic
agents, including paclitaxel and vinblastine, known as spindle poisons. MT-targeting drugs operate by interfering
with dynamic instability (DI): the ability of MTs to rapidly switch from polymerizing to depolymerizing (referred to
as catastrophe) and vice-versa. Paclitaxel operates by decreasing catastrophe rate while vinblastine encourages
catastrophe and inhibits polymerization. A full understanding of MT catastrophe will greatly aid in the design of
spindle poisons with fewer off-target effects, as well as greatly advance general understanding of DI.
Each MT is composed of αβ-tubulin heterodimers, stacked head-to-tail in protofilaments (PFs) which are aligned
laterally to form a hollow tube. Both α- and β-tubulin bind guanosine triphosphate (GTP) and hydrolysis of GTP
to GDP (guanosine diphosphate) at the β-tubulin binding site is hypothesized to induce stress on the MT lattice.
This stress gradually builds until the subunits at the MT end undergo GTP hydrolysis, at which point PFs begin
to peel apart and catastrophe has occurred. Lag between GTP hydrolysis and polymerization creates a construct
referred to as the GTP cap: a group of subunits at the MT end that have yet to hydrolyze GTP, release the
product inorganic phosphate (Pi), or undergo a structural transition. Recent studies have caused doubt in the
field on the nature of this transition and an atomistic understanding of the underlying mechanisms will lead to a
full understanding of catastrophe. I propose to computationally resolve three key aspects of catastrophe: the
mechanism of GTP hydrolysis, the release of Pi, and the structural coupling between PFs leading to catastrophe.
First, I will use enhanced sampling methodology to uncover the enzymatic mechanism of GTP hydrolysis, with
emphasis placed on potential catalytic residues belonging to α-tubulin, which sits atop β-tubulin upon
polymerization to form the active site. Subsequently, I will develop novel computational techniques to determine
the pathway of Pi release post-hydrolysis and examine the potential for structural change upon release. Lastly, I
will develop a coarse-grained (CG) model of a full MT, using rates determined from the previous studies, able to
undergo catastrophe to examine how hydrolysis and Pi release in neighboring subunits affects the potential for
these reactions to occur in a particular subunit. This will give an unprecedentedly detailed view of the loss of the
GTP cap and the steps leading to catastrophe. Additionally, I will collaborate with two leading experimentalists
in the MT community to develop mutants that specifically test my hypotheses and to obtain lattice parameters of
MTs doped with spindle poisons. This will allow me to integrate the effects of drugs into the CG model and
examine how their effects propagate along an MT. These results and the developed models will greatly advance
the understanding of DI and hopefully lead to the development of gentler MT-targeting therapies in the future.
项目概要
微管 (MT) 构成真核细胞骨架的最大组成部分,并促进大量的
多种功能,包括细胞内运输、细胞运动和有丝分裂期间的细胞分裂。
聚集形成有丝分裂纺锤体,使它们成为许多成功化疗的有效药物靶点
药物,包括紫杉醇和长春花碱,被称为纺锤体靶向药物,通过干扰发挥作用。
具有动态不稳定性(DI):MT从聚合快速切换到解聚的能力(称为
作为灾难),反之亦然。
对 MT 灾难的充分理解将极大地有助于设计。
纺锤体毒物具有较少的脱靶效应,并大大增进了对 DI 的一般理解。
每个 MT 由 αβ-微管蛋白异二聚体组成,头尾相连地堆叠在排列整齐的原丝 (PF) 中
横向形成空心管,α-和β-微管蛋白均结合三磷酸鸟苷(GTP)并水解GTP。
β-微管蛋白结合位点处的 GDP(二磷酸鸟苷)被重新捕获,以在 MT 晶格上产生应力。
这种压力逐渐增加,直到 MT 末端的亚基发生 GTP 水解,此时 PF 开始
剥离并发生灾难,GTP 水解和聚合之间的滞后创建了一个结构。
称为GTP帽:MT末端的一组亚基,尚未水解GTP,释放
产物无机磷酸盐(Pi),或经历了结构转变,最近的研究引起了人们的怀疑。
关于这种转变本质的领域以及对基本机制的原子理解将导致
我建议通过计算解决灾难的三个关键方面:
GTP水解、Pi释放以及PF之间的结构耦合导致灾难的机制。
首先,我将使用增强采样方法来揭示 GTP 水解的酶促机制,其中
重点放在属于 α-微管蛋白的潜在催化残基,它位于 β-微管蛋白之上
随后,我将开发新的计算技术来确定。
水解后 Pi 释放的途径并检查释放后结构变化的可能性。
将使用先前研究确定的速率开发完整 MT 的粗粒度 (CG) 模型,能够
经历灾难来检查相邻亚基中的水解和 Pi 释放如何影响潜在的
这些反应发生在特定的亚基中,这将为我们提供前所未有的详细的损失视图。
另外,GTP 上限和导致灾难的步骤,我将与两位领先的实验家合作。
在 MT 社区开发突变体来专门测试我的假设并获得晶格参数
MT 掺杂了纺锤体毒物,这将使我能够将药物的作用整合到 CG 模型中并
研究它们的影响如何沿着 MT 传播。这些结果和开发的模型将大大推进。
对 DI 的理解并有望在未来引领更温和的 MT 靶向疗法的发展。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Unveiling the catalytic mechanism of GTP hydrolysis in microtubules.
- DOI:10.1073/pnas.2305899120
- 发表时间:2023-07-04
- 期刊:
- 影响因子:11.1
- 作者:Beckett, Daniel;Voth, Gregory A.
- 通讯作者:Voth, Gregory A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Beckett其他文献
Daniel Beckett的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Beckett', 18)}}的其他基金
Computational Investigations of the Mechanisms Behind Microtubule Catastrophe
微管灾难背后机制的计算研究
- 批准号:
10330371 - 财政年份:2021
- 资助金额:
$ 3.59万 - 项目类别:
相似国自然基金
胶原纤维在增龄影响骨微观尺度断裂行为和增韧机制中的作用
- 批准号:12302403
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
云门诊应用对医生行为的影响与机制探究
- 批准号:72301281
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
典型纳米塑料在污水处理厂核心单元中的迁移/累积行为及其影响机制
- 批准号:42307487
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
污染光环还是污染避风港:境内外机构投资者对我国企业环保行为影响的比较研究
- 批准号:72302113
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ErbB4介导未定带PV中间神经元通过影响ZI-VTA神经环路调控PTSD样行为的机制研究
- 批准号:82301706
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Characterization of JT-4-173, a Potent Antiviral that Inhibits HIV-1 by a Novel Mechanism of Action
JT-4-173 的表征,一种通过新颖作用机制抑制 HIV-1 的强效抗病毒药物
- 批准号:
10762518 - 财政年份:2023
- 资助金额:
$ 3.59万 - 项目类别:
Selective CYP26 inhibitors for the oral treatment of recalcitrant nodular acne.
用于口服治疗顽固性结节性痤疮的选择性 CYP26 抑制剂。
- 批准号:
10822482 - 财政年份:2023
- 资助金额:
$ 3.59万 - 项目类别:
Structural and functional studies of glycosyl hydrolases governing Vibrio biofilm dispersal
控制弧菌生物膜分散的糖基水解酶的结构和功能研究
- 批准号:
10795423 - 财政年份:2023
- 资助金额:
$ 3.59万 - 项目类别:
Proteoglycan Metabolism During Cardiac Valve Development and Disease
心脏瓣膜发育和疾病期间的蛋白多糖代谢
- 批准号:
10543104 - 财政年份:2022
- 资助金额:
$ 3.59万 - 项目类别:
Role of BRD4 in Normal Hematopoiesis and Hematopoietic Stem Cell Biology_
BRD4在正常造血和造血干细胞生物学中的作用_
- 批准号:
10610534 - 财政年份:2022
- 资助金额:
$ 3.59万 - 项目类别: