Data Science for Decision Support in the HIV Care Cascade
HIV 护理级联中决策支持的数据科学
基本信息
- 批准号:10516747
- 负责人:
- 金额:$ 69.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-11-01 至 2026-10-31
- 项目状态:未结题
- 来源:
- 关键词:Acquired Immunodeficiency SyndromeAddressAdultAftercareAlgorithmsAntiviral TherapyArchitectureBenchmarkingCaringCase-Mix AdjustmentsClientClinicClinicalClinical DataClinical Decision Support SystemsClinical TrialsCommunicationCountryDataData ScienceData SetData SourcesDatabasesDecision MakingDevelopmentDiagnosisDrug resistanceEarly identificationElectronic Health RecordEmergency SituationEnvironmentFailureFast Healthcare Interoperability ResourcesFeedbackGeographic LocationsGuidelinesHIVHIV/AIDSHealthHealth care facilityHealth systemHealthcareImpact evaluationIncidenceIndividualInfectionInterventionInvestmentsKenyaLearningMeasuresMethodsModelingModern 1601-historyMotivationObservational StudyOutcomeOutputPatientsPersonsPhasePhysiciansPredictive ValuePrevalenceProcessPublic HealthQuality of CareRandomizedResearchResearch PersonnelScheduleSocial supportSpecific qualifier valueSystemTechnologyTestingTimeUncertaintyUpdateViralViral Load resultViral load measurementVisualization softwareWorkantiretroviral therapycare outcomesclinical decision supportclinical implementationclinical predictive modeldata visualizationdesignefficacy evaluationelectronic health dataelectronic health record systemfield studyfollow-uphealth care availabilityhigh riskimprovedlow and middle-income countriesmachine learning algorithmmachine learning modelpandemic diseasepatient engagementpatient retentionpoint of carepredictive modelingpreventprogramspublic health interventionresearch clinical testingresponseretention ratestatistical and machine learningsupport toolstooltool developmenttransmission process
项目摘要
Abstract
HIV and AIDS continue to be significant public health issues, but with recent advances in treatment,
technology, clinical and social support, the research and treatment agenda now explicitly and
realistically includes bringing the decades-long pandemic to an end. The President’s Emergency Plan
for AIDS Relief (PEPFAR) is an ongoing multi-billion investment to deliver antiviral therapy to those in
low- and middle-income countries (LMIC), and has been regarded by many as the most successful public
health intervention in modern history, having dramatically reduced both prevalence and incidence of
HIV over the past two decades. With both clinical trials and observational studies conclusively
demonstrating that immediate treatment with antiretroviral therapy (ART) is the mosteffective way to
both treat HIV and prevent the transmission of new infections, retention in HIV care and suppression
of viral load through compliance with ART are arguably the most effective methods available for
bringing the pandemic to an end, and indeed are encoded in the UNAIDS 95-95-95 benchmarks of
having 95% of cases diagnosed; 95% of diagnosed cases initiated and retained on ART; and 95% of
treated individuals achieving viral suppression.
Clinical decision support systems (CDSS) tailored to the requirements of LMICs have been shown to
improve compliance with guidelines and quality of care by a range of healthcare staff. Use of machine
learning algorithms allows the development of prediction models for clinical complications and
outcomes, which can guide health care staff in early identification of problems and appropriate
interventions. The Specific Aims of this proposal therefore are (1) to use a large electronic health
record (EHR) database to develop and validate statistical machine learning models to identify patient
at high risk for loss to follow up and viral failure; (2) to develop and field test implementation of clinical
decision support tools based on these models that will be implemented at the point of care; and (3) to
evaluate the efficacy of the decision support tools, in terms of improving patient retention and reducing
viral failure, using a randomized comparison at the clinic level. Our project will be implemented at the
Academic Model Providing Access to Healthcare (AMPATH), an HIV care program in western Kenya
serving nearly 200,000 people with HIV.
抽象的
艾滋病毒和艾滋病仍然是重大的公共卫生问题,但随着治疗的最新进展,
技术、临床和社会支持、研究和治疗议程现在已明确并
实际上包括结束长达数十年的大流行病。
艾滋病救援 (PEPFAR) 是一项持续数十亿美元的投资,旨在为艾滋病患者提供抗病毒治疗
低收入和中等收入国家 (LMIC),并被许多人视为最成功的公共
现代史上的健康干预极大地降低了疾病的患病率和发病率
过去二十年的艾滋病毒临床试验和观察研究得出结论。
证明立即进行抗逆转录病毒治疗(ART)是最有效的方法
既治疗艾滋病毒又预防新感染的传播,保留艾滋病毒护理和抑制
通过遵守 ART 来控制病毒载量是有争议的,但最有效的方法是
结束这一流行病,并且确实被编码在联合国艾滋病规划署 95-95-95 基准中
95% 的确诊病例已启动并保留了 ART;
接受治疗的个体实现了病毒抑制。
根据中低收入国家的要求量身定制的临床决策支持系统 (CDSS) 已被证明可以
提高一系列医疗保健人员对机器使用的指导方针和护理质量的遵守情况。
学习算法可以开发临床并发症的预测模型
结果,可以指导医护人员及早发现问题并采取适当的措施
因此,该提案的具体目标是(1)使用大型电子健康。
记录 (EHR) 数据库,用于开发和验证统计机器学习模型以识别患者
(2)制定并现场试验实施临床
基于这些模型的决策支持工具将在护理点实施;(3)
评估决策支持工具在提高患者保留率和减少
病毒性失败,在临床层面进行随机比较,我们的项目将在临床层面实施。
提供医疗保健的学术模型 (AMPATH),肯尼亚西部的艾滋病毒护理计划
为近 200,000 名艾滋病毒感染者提供服务。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hamish SF Fraser其他文献
Hamish SF Fraser的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hamish SF Fraser', 18)}}的其他基金
Evaluating diagnostic decision support systems for patients requiring urgent primary or emergency care or with stroke
评估需要紧急初级或紧急护理或中风患者的诊断决策支持系统
- 批准号:
10720028 - 财政年份:2023
- 资助金额:
$ 69.07万 - 项目类别:
Data Science for Decision Support in the HIV Care Cascade
HIV 护理级联决策支持的数据科学
- 批准号:
10402665 - 财政年份:2021
- 资助金额:
$ 69.07万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Exploiting Metabolism to Uncloak Epstein-Barr Virus Immunogens in Latently Infected B-cells
利用代谢揭示潜伏感染 B 细胞中的 Epstein-Barr 病毒免疫原
- 批准号:
10889325 - 财政年份:2023
- 资助金额:
$ 69.07万 - 项目类别:
Developing a Risk Index for Functional Decline in Middle-Aged and Older Adults with HIV
制定中老年艾滋病毒感染者功能衰退的风险指数
- 批准号:
10762280 - 财政年份:2023
- 资助金额:
$ 69.07万 - 项目类别: