Parkinson's and Prokaryotes: roles of bacteria, gut permeability, innate immunity, and genetics in C. elegans dopaminergic neurodegeneration
帕金森病和原核生物:细菌、肠道通透性、先天免疫和遗传学在秀丽隐杆线虫多巴胺能神经变性中的作用
基本信息
- 批准号:10513821
- 负责人:
- 金额:$ 6.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-12-01 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAmericanAnimal DiseasesAnimalsAnti-Inflammatory AgentsAttenuatedBacteriaBacterial GenesBifidobacteriumBiologyBrainCRISPR/Cas technologyCaenorhabditis elegansCharacteristicsChemicalsChromosome MappingCloningComplexConfocal MicroscopyDNADNA Sequence AlterationDeletion MutationDiagnosisDiseaseDisease OutcomeDisease ProgressionDisease modelEnhancersEnteralEpitheliumEscherichia coliExtravasationFoodFunctional disorderGenesGeneticGenetic ScreeningGnotobioticGoalsHomologous GeneHumanImmuneImmune signalingImmunologic ReceptorsImmunologyIndividualInflammationInflammatoryInflammatory ResponseIntegration Host FactorsIntestinal permeabilityIntestinesLabelLactobacillusLeadLeaky GutLigandsLipopolysaccharidesLiquid substanceLongevityMammalsMeasuresMediatingMicrobeMicrobiologyModelingMolecularMonitorMovementMusMutagenesisMutateMutationNatural ImmunityNatureNematodaNerve DegenerationNeurobiologyNeurodegenerative DisordersParkinson DiseasePathogenesisPathologyPatientsPatternPattern RecognitionProkaryotic CellsProteinsReceptor ActivationResearchRoleRouteSalineScreening procedureSignal TransductionSourceSymptomsTechniquesTherapeutic UsesTight JunctionsTissuesToll-like receptorsVagus nerve structurealpha synucleinbasolateral membranecostcost efficientdisease diagnosisdisease phenotypedopaminergic neuroneffective therapyempowermentgenome editinggut bacteriagut microbesgut microbiotahost-microbe interactionsimprovedin vivoin vivo Modelinnate immune sensinginsightloss of functionmicrobialmodel organismmotor controlmutantnegative affectneuroinflammationneuron lossnew therapeutic targetnovelscreening
项目摘要
Abstract
Parkinson’s disease (PD), characterized by the degeneration of dopaminergic (DA) neurons via 𝛼-Synuclein (𝛼S)
aggregation, costs $51.9 billion annually in the US and is predicted to affect 1.2 million Americans by 2030.
Current treatments only provide limited and symptomatic relief, with no functional cure, largely due to the
mysterious nature in which PD is initiated. Thus, a deeper, mechanistic understanding of PD pathogenesis is vital
for effective treatment. An emerging hypothesis is that PD begins in the gut, where 𝛼S aggregates spread from
the gut to the brain via routes like the vagus nerve. Interestingly, these 𝛼S aggregates are detected in the gut years
before PD diagnosis. In addition, gut permeability and dysfunction are common in PD patients. Although these
intestinal pathologies likely lead to in the translocation of gut bacteria and microbe-associated molecular patterns
(MAMPs) into host tissues and subsequent induction of inflammation via innate immune receptor activation, this
has not been directly investigated. Thus, the role of gut bacteria and innate immune receptors in 𝛼S aggregation
and PD progression is unclear. Furthermore, mammalian models for PD like mice are biologically complex,
harbor a diverse gut microbiota, and cannot undergo unbiased mutagenesis screens to identify novel PD factors.
Thus, a minimalist model which is genetically tractable and permits mutagenesis screens for both the host and
individual microbes would empower identification of novel host and bacterial factors crucial to PD pathogenesis.
To this end, I propose to use the nematode Caenorhabditis elegans, a model organism widely used in disease
study and PD research, to investigate how gut bacteria may trigger inflammatory responses that exacerbate
DA neurodegeneration. The particular model that I will use co-expresses human 𝛼S and GFP in DA neurons,
causing a progressive loss of DA neurons as indicated by GFP signal loss. My proposed studies will use the
CRISPR-Cas9 genome editing technique to inactivate genes crucial for gut barrier integrity and innate immune
receptors and then investigate the spatial role of these genes in PD pathogenesis by monitoring fluorescently-
labeled 𝛼S and GFP-labeled DA neurons. Furthermore, bacterial species or specific MAMPs will be individually
given to C. elegans as bacterial food sources or treatments, respectively, to identify what bacterial characteristics
may enhance or suppress PD. Lastly, I will conduct mutagenesis screens on C. elegans and individual bacterial
lawns to identify novel host and bacterial factors, respectively, which either promote or inhibit PD progression.
My proposed study will help identify novel therapeutic targets and treatments to block or potentially reverse PD,
using C. elegans as a cost-efficient screening tool. This project is highly interdisciplinary, combining
immunology, neurobiology, microbiology, enteric biology, and genetics. This strategy improves the possibility
of identifying novel factors and treatments which affect PD pathogenesis.
抽象的
帕金森病 (PD),其特征是多巴胺能 (DA) 神经元通过𝛼-突触核蛋白 (𝛼S) 发生退化
美国每年花费 519 亿美元,预计到 2030 年将影响 120 万美国人。
目前的治疗只能提供有限的症状缓解,无法实现功能性治愈,这主要是由于
PD 发病机制的神秘本质因此,对 PD 发病机制有更深入、机制的了解至关重要。
一个新出现的假设是 PD 始于肠道,𝛼S 聚集体从肠道传播。
通过迷走神经等途径从肠道到达大脑,这些 𝛼S 聚集体是在肠道中检测到的。
在 PD 诊断之前,肠道通透性和功能障碍在 PD 患者中很常见。
肠道病理可能导致肠道细菌和微生物相关分子模式的易位
(MAMP)进入宿主组织并随后通过先天免疫受体激活诱导炎症,这
因此,肠道细菌和先天免疫受体在𝛼S聚集中的作用尚未得到直接研究。
此外,PD 小鼠模型在生物学上很复杂,
拥有多样化的肠道微生物群,并且无法进行公正的诱变筛选来新识别 PD 因子。
因此,aist模型在遗传上是易于处理的,并且允许对宿主和宿主进行诱变筛选。
单个微生物将有助于识别对帕金森病发病机制至关重要的新宿主和细菌因素。
为此,我建议使用线虫秀丽隐杆线虫,一种广泛用于疾病治疗的模式生物
研究和 PD 研究,调查肠道细菌如何引发恶化的炎症反应
我将使用的特定模型在 DA 神经元中共同表达人类 𝛼S 和 GFP,
我提议的研究将使用
CRISPR-Cas9 基因组编辑技术可灭活对肠道屏障完整性和先天免疫至关重要的基因
受体,然后通过监测荧光来研究这些基因在 PD 发病机制中的空间作用
此外,细菌种类或特定的 MAMP 将被单独标记。
分别给予秀丽隐杆线虫作为细菌食物来源或治疗方法,以确定细菌特征
最后,我将对秀丽隐杆线虫和个别细菌进行诱变筛选。
草坪分别识别新的宿主和细菌因素,它们促进或抑制PD进展。
我提出的研究将有助于确定新的治疗靶点和治疗方法,以阻止或可能逆转帕金森病,
使用线虫作为具有成本效益的筛选工具该项目是高度跨学科的,结合了。
免疫学、神经生物学、微生物学、肠道生物学和遗传学提高了可能性。
确定影响 PD 发病机制的新因素和治疗方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Graham Redweik其他文献
Graham Redweik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Graham Redweik', 18)}}的其他基金
Parkinson's and Prokaryotes: roles of bacteria, gut permeability, innate immunity, and genetics in C. elegans dopaminergic neurodegeneration
帕金森病和原核生物:细菌、肠道通透性、先天免疫和遗传学在秀丽隐杆线虫多巴胺能神经变性中的作用
- 批准号:
10350401 - 财政年份:2021
- 资助金额:
$ 6.91万 - 项目类别:
相似海外基金
Selective actin remodeling of sensory neurons for acute pain management
感觉神经元的选择性肌动蛋白重塑用于急性疼痛管理
- 批准号:
10603436 - 财政年份:2023
- 资助金额:
$ 6.91万 - 项目类别:
Impact of Mitochondrial Lipidomic Dynamics and its Interaction with APOE Isoforms on Brain Aging and Alzheimers Disease
线粒体脂质组动力学及其与 APOE 亚型的相互作用对脑衰老和阿尔茨海默病的影响
- 批准号:
10645610 - 财政年份:2023
- 资助金额:
$ 6.91万 - 项目类别:
Resident Memory T cells in Chronic Kidney Disease
慢性肾脏病中的常驻记忆 T 细胞
- 批准号:
10676628 - 财政年份:2023
- 资助金额:
$ 6.91万 - 项目类别:
Mechanisms of NMDAR contribution to traumatic injury in retinal ganglion cells
NMDAR对视网膜神经节细胞创伤性损伤的作用机制
- 批准号:
10570666 - 财政年份:2023
- 资助金额:
$ 6.91万 - 项目类别: