Real-Time Monitoring and Scavenging of Reactive Oxygen Species (ROS) to Enhance Cochlear Implantation Outcomes
实时监测和清除活性氧 (ROS) 以提高人工耳蜗植入效果
基本信息
- 批准号:10515333
- 负责人:
- 金额:$ 18.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-12-01 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:Acoustic NerveAcousticsAcuteAdultAffectAgeAnionsAntioxidantsApoptoticAuditoryAuditory Brainstem ResponsesAutopsyBenchmarkingBiotechnologyCell DeathCessation of lifeChemicalsChildChronicClinicalCochleaCochlear ImplantsCochlear implant procedureComplexCorrosionDNADetectionDevelopmentDevicesDrug Metabolic DetoxicationElasticityElectric StimulationElectrochemistryElectrodesEnzymesExcisionFailureFluorescenceFree RadicalsGelatinGene Expression ProfilingGoalsHair CellsHealthHearingHistologicHydrogelsHydrogen PeroxideHydroxidesHydroxyl RadicalImmune responseImplantImplanted ElectrodesIn SituIn VitroIndividualInflammatoryInflammatory ResponseInjuryIschemiaLigamentsLipidsMeasuresMediatingMetalsMethodsMicroelectrodesModelingModificationModiolusMonitorNatural regenerationNerve FibersNeuronsOperative Surgical ProceduresOrgan of CortiOutcomeOxidantsOxidative StressOxidative Stress InductionOxidative Stress PathwayPalladiumPerformancePeroxonitritePersonsPlayPolymersPostoperative PeriodProcessProtective AgentsProteinsRattusReactionReactive Nitrogen SpeciesReactive Oxygen SpeciesReperfusion TherapyResearch ActivityResidual stateResistanceSensitivity and SpecificitySiteSpecificitySpiral LaminaStria VascularisSuperoxidesSurfaceSurgical InjuriesTechnologyTestingTherapeuticTimeTissuesToxic effectTraumaantioxidant therapybiomaterial compatibilitydeafdesignexperienceflexibilityfunctional restorationhard of hearinghearing impairmenthearing restorationimmunocytochemistryimplantable deviceimplantationimprovedin vivoin vivo monitoringmedical implantmembermetallicitymultidisciplinarynanofibernanoparticleneuralneural implantneural prosthesisneuroinflammationneurophysiologyneurotrophic factornovelparylenepharmacologicpreclinical developmentpreservationpreventreal time monitoringsensor technologyspiral ganglionstandard carevalidation studies
项目摘要
Project Summary
Hearing loss is the third most common health condition, affecting people of all ages. For individuals who are deaf
or have significant hearing loss, cochlear implants (CIs) are a standard treatment. CIs restore hearing by electrically
stimulating residual viable auditory nerve fibers in the cochlea with an implanted electrode array. However, cochlear
implantation is always accompanied by surgical injury, which initiates an acute inflammatory response to the
electrode and induces on-set and progressive loss of residual acoustic hearing. Thus, there is an urgent need to
develop a real-time monitoring method to help understand the neural conditions during and after implantation and
subsequent hearing loss to enhance post-operative clinical outcomes. Inflammatory process induces oxidative
stress (i.e. an elevated intracellular level of reactive oxygen species (ROS)) and reduces cellular antioxidant
capacity. Numerous studies have shown that oxidative stress plays key roles for chronic neuroinflammation.
Therefore, we hypothesize that oxidative stress is the major factor compromising CIs’ clinical outcome. In this R21
project, we propose to develop novel multifunctional CI electrodes and methods that can simultaneously monitor
and scavenge initiation of the oxidative stress pathway during and after cochlear implantation. We will develop the
multifunctional CIs to achieve real-time in vivo sensing and scavenging of ROS with clinically required sensitivity
and specificity. Our approach to develop advanced multifunctional CIs is to utilize the unique palladium (Pd) and
Pd bimetallic (i.e. Pd/Au) nanoparticles that show enzyme-like activities allowing sensitive and selective sensing of
ROS as well as converting ROS to neutral molecules. In contrast to existing surface technologies for auditory
neuronal protection and regeneration, our noble metal nanocatalysts as CIs electrodes are corrosion-resistant and
biocompatible, and their unique surface electrochemistry can provide continuous (during and post-operative times)
sensing and removal of ROS in vivo with high stability. The simultaneous neutralization of ROS with their
electrochemical sensing reactions should mitigate oxidative stress-related cell death without disrupting the well-
integrated innate antioxidant defense network, thus, improving post-operative clinical outcomes for individuals with
CIs. In Aim 1, we will design and fabricate multifunctional CIs with bimetallic Pd/Au nanocatalysts integrated into a
flexible parylene-based electrode array for detecting and scavenging ROS in vitro. In Aim 2, we will validate the
detection and scavenging functions of the multifunctional CIs with an integrated microchannel in a rat model. Results
from these pre-clinical development and validation studies in this R21 project will form the basis of a long-term R01
project to fully integrate sensing/scavenging capability into CI devices that are capable of recording, stimulation,
sensing and scavenging functions for long-term clinical use. We also foresee the opportunities to apply the results
gained here to other neural interfaces and medical implants. Our established multidisciplinary team with each
member has more than 20 years’ experience with in vivo neuroprobe, real-time chemical sensor technology, and
auditory neurophysiology respectively, making us well prepared to be successful in the proposed research activities.
项目概要
听力损失是第三大常见的健康状况,影响所有年龄段的聋人。
或有严重听力损失,人工耳蜗 (CI) 是通过电恢复听力的标准治疗方法。
使用植入的电极阵列刺激耳蜗中残留的可行听觉神经纤维。
植入总是伴随着手术损伤,从而引发急性炎症反应
电极并诱发残余声学听力的开始和渐进性丧失,因此,迫切需要
开发实时监测方法以帮助了解植入期间和之后的神经状况
随后的听力损失可增强术后临床结果。炎症过程会诱导氧化。
压力(即细胞内活性氧 (ROS) 水平升高)并减少细胞抗氧化剂
大量研究表明,氧化应激在慢性神经炎症中发挥着关键作用。
因此,我们认为氧化应激是影响 CI 临床结果的主要因素。
项目中,我们建议开发新型多功能 CI 电极和方法,可以同时监测
我们将开发人工耳蜗植入期间和之后氧化应激途径的启动。
多功能 CI 可实现实时体内检测和清除 ROS,并具有临床所需的灵敏度
我们开发先进多功能 CI 的方法是利用独特的钯 (Pd) 和
Pd 双金属(即 Pd/Au)纳米粒子表现出类似酶的活性,允许灵敏和选择性地传感
ROS 以及将 ROS 转化为中性分子,与现有的听觉表面技术形成鲜明对比。
神经保护和再生,我们的贵金属纳米催化剂作为 CI 电极具有耐腐蚀和
生物相容性,其独特的表面电化学可以提供连续的(手术期间和术后时间)
体内活性氧的高稳定性检测和去除,同时中和活性氧。
电化学传感反应应该减轻氧化应激相关的细胞死亡,而不破坏良好的状态。
整合先天抗氧化防御网络,从而改善患有以下疾病的个体的术后临床结果
在目标 1 中,我们将设计和制造集成有双金属 Pd/Au 纳米催化剂的多功能 CI。
用于体外检测和清除 ROS 的柔性聚对二甲苯电极阵列 在目标 2 中,我们将验证
具有集成微通道的多功能 CI 在大鼠模型中的检测和清除功能。
R21 项目中的这些临床前开发和验证研究将构成长期 R01 的基础
该项目将传感/清除功能完全集成到 CI 设备中,这些设备能够记录、刺激、
我们还预见到应用结果的机会。
我们建立的多学科团队在此获得了其他神经接口和医疗植入物的经验。
成员在体内神经探针、实时化学传感器技术方面拥有 20 多年的经验
听觉神经生理学分别使我们做好了在拟议的研究活动中取得成功的充分准备。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
XIANGQUN ZENG其他文献
XIANGQUN ZENG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('XIANGQUN ZENG', 18)}}的其他基金
Troponin Biosensor for Early Detection and Real-time Monitoring of Myocardial Infarction
用于心肌梗死早期检测和实时监测的肌钙蛋白生物传感器
- 批准号:
10483760 - 财政年份:2022
- 资助金额:
$ 18.95万 - 项目类别:
Biosensors for determination of multiple neurotransmitters in vertebrate retina
用于测定脊椎动物视网膜中多种神经递质的生物传感器
- 批准号:
10459565 - 财政年份:2021
- 资助金额:
$ 18.95万 - 项目类别:
Biosensors for determination of multiple neurotransmitters in vertebrate retina
用于测定脊椎动物视网膜中多种神经递质的生物传感器
- 批准号:
10300675 - 财政年份:2021
- 资助金额:
$ 18.95万 - 项目类别:
Real-Time Monitoring and Scavenging of Reactive Oxygen Species (ROS) to Enhance Cochlear Implantation Outcomes
实时监测和清除活性氧 (ROS) 以提高人工耳蜗植入效果
- 批准号:
10372434 - 财政年份:2021
- 资助金额:
$ 18.95万 - 项目类别:
ScFv Piezoimmunosensor Detection of Therapeutic Antibodies in Human Serum
ScFv 压电免疫传感器检测人血清中的治疗性抗体
- 批准号:
7788377 - 财政年份:2010
- 资助金额:
$ 18.95万 - 项目类别:
ScFv Piezoimmunosensor Detection of Therapeutic Antibodies in Human Serum
ScFv 压电免疫传感器检测人血清中的治疗性抗体
- 批准号:
8010212 - 财政年份:2010
- 资助金额:
$ 18.95万 - 项目类别:
Ionic Liquid Gas Sensors for Detection of Flammable Gases In Workplace
用于检测工作场所可燃气体的离子液体气体传感器
- 批准号:
7925620 - 财政年份:2009
- 资助金额:
$ 18.95万 - 项目类别:
QCM Quantification of Endocrine Disruptor Activity
内分泌干扰物活性的 QCM 定量
- 批准号:
6882801 - 财政年份:2004
- 资助金额:
$ 18.95万 - 项目类别:
Engineered Self-Assembling Fvs for Piezoimmunosensors
用于压电免疫传感器的工程自组装 Fv
- 批准号:
6935938 - 财政年份:2003
- 资助金额:
$ 18.95万 - 项目类别:
Engineered Self-Assembling Fvs for Piezoimmunosensors
用于压电免疫传感器的工程自组装 Fv
- 批准号:
7848738 - 财政年份:2003
- 资助金额:
$ 18.95万 - 项目类别:
相似国自然基金
鼓泡床密相区温度、颗粒浓度与气泡分布的二维同步声学双参数成像
- 批准号:62301355
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
声学拓扑安德森绝缘体拓扑特性研究
- 批准号:12304486
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
轨道模式依赖的声学拓扑态及其应用研究
- 批准号:12304492
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度学习的右心声学造影PFO-RLS和P-RLS智能诊断模型的构建
- 批准号:82302198
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
声学和弹性分层介质反散射问题的理论与数值算法
- 批准号:12371422
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
Changes in apical cochlear mechanics after cochlear implantation
人工耳蜗植入后耳蜗顶端力学的变化
- 批准号:
10730981 - 财政年份:2023
- 资助金额:
$ 18.95万 - 项目类别:
Development of Specializations Required for Temporal Coding in Octopus Cells
章鱼细胞时间编码所需专业化的发展
- 批准号:
10541129 - 财政年份:2021
- 资助金额:
$ 18.95万 - 项目类别:
Development of Specializations Required for Temporal Coding in Octopus Cells
章鱼细胞时间编码所需专业化的发展
- 批准号:
10686066 - 财政年份:2021
- 资助金额:
$ 18.95万 - 项目类别:
Real-Time Monitoring and Scavenging of Reactive Oxygen Species (ROS) to Enhance Cochlear Implantation Outcomes
实时监测和清除活性氧 (ROS) 以提高人工耳蜗植入效果
- 批准号:
10372434 - 财政年份:2021
- 资助金额:
$ 18.95万 - 项目类别: