Ultrasound-assisted extracellular vesicle engineering and induced release: EVEiR
超声辅助细胞外囊泡工程和诱导释放:EVEiR
基本信息
- 批准号:10506164
- 负责人:
- 金额:$ 24.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAnti-Inflammatory AgentsAntiinflammatory EffectBiophysical ProcessBlood CirculationCell membraneCellsCharacteristicsChemicalsClinicClinical ResearchClinical TreatmentCommunitiesDNADetectionDiseaseDistantDrug Delivery SystemsEconomic BurdenEncapsulatedEndotheliumEngineeringEnvironmentExtracellular MatrixFoundationsFutureGenerationsGenesGoalsHydrogelsImmune EvasionIn VitroInterleukin-10IntestinesKidneyLiposomesLiverMammalian CellMechanical StimulationMechanicsMediatingMembrane ProteinsMesenchymal Stem CellsMessenger RNAMethodsMissionModelingNanotechnologyPatientsPeriodicityPharmaceutical PreparationsPhysiologic pulsePhysiologicalPlasmidsProductionPropertyProteinsPublic HealthResearchSafetySolidSpleenStretchingSurfaceSystemTechniquesTechnologyTestingTherapeuticTherapeutic EffectTimeTissuesToxic effectTransfectionTranslatingTranslationsTransmembrane TransportTreatment EfficacyUnited States National Institutes of HealthUntranslated RNAbasechronic inflammatory diseaseclinical applicationcost effectivecytokinecytotoxicitydelivery vehicledisabilityextracellular vesicleshealth economicsin vivoinnovationmechanical propertiesmechanical signalnanomedicinenanoparticlenovelnovel strategiespreclinical studysmall moleculesonoporationsynergismtargeted deliverytherapeutically effectivethree dimensional cell cultureultrasoundvectorvesicular releaseviscoelasticity
项目摘要
PROJECT SUMMARY
While nanoparticle-based platforms have become a leading drug delivery platform for treating
various diseases, several challenges remain in current nanomedicine, including toxicity, inefficient
endothelial barrier crossing, rapid elimination, and nonspecific accumulation in the body. Extra-
cellular vesicles (EVs) provide a natural delivery system that can transfer various cellular cargo
to adjacent and distant cells. EVs offer unique advantages for engineering while possessing in-
herent immune evasion capability and tissue penetrating characteristics. However, inefficient
therapeutic cargo packaging and insufficient EV production from cells limit the current EV-based
drug delivery approach.
Chronic inflammatory disease (CID) imposes health and economic burdens on communi-
ties worldwide. Current therapy of CID is neither sufficient nor disease-modifying. Our ultimate
goal is to develop a safe and effective EV-based therapy for CID patients. The overall objectives
in this application are to (i) develop an ultrasound (US)-based platform termed EVEiR (Extracel-
lular Vesicle Engineering and induced Release) for delivering anti-inflammatory cytokine IL10,
and (ii) determine their therapeutic efficacy using an in vitro intestinal model. The central hypoth-
esis is that externally applied mechanical cues using US stimulation and the mechanical proper-
ties of the cell microenvironment may increase the production and function of engineered EVs
(eEVs) derived from mesenchymal stem cells (MSCs) in 3D cultures. We will test the central
hypothesis by pursuing two Specific Aims: 1) Develop US-assisted EVEiR for efficient production
of anti-inflammatory IL10-carrying eEVs (IL10+ eEVs); and 2) Demonstrate the feasibility of IL10+
eEVs derived from MSCs in 3D cultures for targeted delivery of therapeutics. Aim 1 will determine
the efficiency of IL10+ eEV production using the novel US-based techniques. Aim 2 will charac-
terize the properties of IL10+ eEVs and their anti-inflammatory effect using an in vitro intestinal
model. The innovation of this proposal is to utilize the synergy with the impact of non-viral intra-
cellular IL10 packaging in EVs, the unique concept of pulsed US stimulation of MSCs in 3D hy-
drogel constructs for efficient eEV production. In addition, an in vitro intestinal model allows for
efficient characterization of anti-inflammatory IL10+ eEVs in a physiologically relevant environ-
ment. The proposed research is significant because the successful completion of this project will
develop a rapid, cost-effective, and scalable platform to generate MSC-derived therapeutic EVs
for treating CID and facilitate the translation of MSC-derived EVs to the clinic.
项目摘要
虽然基于纳米颗粒的平台已成为治疗的领先的药物输送平台
各种疾病,当前纳米医学中仍然存在一些挑战,包括毒性,效率低下
内皮屏障交叉,快速消除和体内非特异性积累。额外的-
细胞囊泡(EV)提供了一种自然递送系统,可以转移各种蜂窝货物
到相邻和远处的细胞。电动汽车在拥有内部的同时为工程提供了独特的优势
遗传免疫逃避能力和组织穿透特性。但是,效率低下
治疗性货物包装和电池的EV产生不足限制了当前基于EV的电流
药物输送方法。
慢性炎症性疾病(CID)对社区施加健康和经济负担
在世界范围内联系。 CID的当前疗法既不足够也不足够。我们的最终
目标是为CID患者开发一种安全有效的基于EV的治疗。总体目标
在此应用中,(i)开发一个超声(US)的平台称为Eveir(Extracel-
Lular囊泡工程和诱导的释放)用于输送抗炎细胞因子IL10,
(ii)使用体外肠模型确定其治疗功效。中央假设
ESI是使用US刺激和机械适当的外部应用机械线索
细胞微环境的关系可能会增加工程电动汽车的产生和功能
(EEV)源自3D培养物中的间充质干细胞(MSC)。我们将测试中央
通过追求两个具体目标来假设:1)开发高效生产的美国辅助夏娃
抗炎IL10携带EEV(IL10+ EEV)的; 2)证明IL10+的可行性
源自3D培养物中的MSC的EEV,用于靶向疗法的靶向递送。 AIM 1将确定
使用新型美国技术生产IL10+ EEV的效率。 AIM 2将符合
使用体外肠道化IL10+ EEV的特性及其抗炎作用
模型。该提案的创新是利用非病毒内部影响的协同作用
电动汽车中的细胞IL10包装,这是脉动美国对3D hy-刺激MSC的独特概念
Drogel构造有效的EEV生产。另外,体外肠模型允许
在生理相关的环境中的抗炎IL10+ EEV的有效表征
精神。拟议的研究很重要,因为该项目的成功完成将
开发一个快速,成本效益且可扩展的平台,以生成MSC衍生的治疗性电动汽车
用于处理CID并促进MSC衍生的电动汽车转换为诊所。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Masamitsu Kanada其他文献
Masamitsu Kanada的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
靶向HDAC3/SIAH2蛋白复合物的HDAC3降解剂的作用机制、结构改造及非酶活功能介导的抗炎活性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
卡萨烷选择性调控糖皮质激素受体GR功能的抗炎作用机制与新颖调控剂的设计与发现
- 批准号:82273824
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
新型RORγt反向激动剂的设计合成、作用机制和抗类风湿关节炎活性研究
- 批准号:81573276
- 批准年份:2015
- 资助金额:50.0 万元
- 项目类别:面上项目
胆碱能抗炎通路介导K阿片受体激动剂在体外循环促发术后认知功能障碍中的保护作用与机制
- 批准号:81471121
- 批准年份:2014
- 资助金额:70.0 万元
- 项目类别:面上项目
特异性RORγ拮抗剂的设计、合成和抗炎作用机制研究
- 批准号:81373325
- 批准年份:2013
- 资助金额:70.0 万元
- 项目类别:面上项目
相似海外基金
Targeting keratinocyte cholesterol metabolism to reveal novel mechanisms for treating inflammatory skin disease
针对角质形成细胞胆固醇代谢揭示治疗炎症性皮肤病的新机制
- 批准号:
10696943 - 财政年份:2022
- 资助金额:
$ 24.39万 - 项目类别:
Chromosome Instability Drives Metal-Induced Lung Cancer
染色体不稳定性导致金属诱发肺癌
- 批准号:
10459886 - 财政年份:2022
- 资助金额:
$ 24.39万 - 项目类别:
Targeting keratinocyte cholesterol metabolism to reveal novel mechanisms for treating inflammatory skin disease
针对角质形成细胞胆固醇代谢揭示治疗炎症性皮肤病的新机制
- 批准号:
10537802 - 财政年份:2022
- 资助金额:
$ 24.39万 - 项目类别:
Role of the environmental sensor, AhR on colitis
环境传感器 AhR 对结肠炎的作用
- 批准号:
10390988 - 财政年份:2021
- 资助金额:
$ 24.39万 - 项目类别:
Role of the environmental sensor, AhR on colitis
环境传感器 AhR 对结肠炎的作用
- 批准号:
10494130 - 财政年份:2021
- 资助金额:
$ 24.39万 - 项目类别: