Using factorial design to examine efficacies of technology-based augmentations for improving treatment adherence and skills utilization in a self-help CBT program for binge eating.
使用析因设计来检验基于技术的增强措施在针对暴食症的自助 CBT 计划中提高治疗依从性和技能利用率的功效。
基本信息
- 批准号:10507528
- 负责人:
- 金额:$ 22.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AbstinenceAftercareAlgorithmsAreaBachelor&aposs DegreeBehaviorBehavior DisordersBehavioralBinge EatingBooksCellular PhoneClinicalCognitive TherapyCompanionsDataDevelopmentDiseaseEatingEating DisordersElectronic MailEvidence based programFeedbackFibrinogenFoodFrequenciesHealthHealthcare SystemsIndividualInterventionMeta-AnalysisMonitorOutcomePathway interactionsPatientsPatternPeriodicityRecommendationRecurrenceSelf AdministrationSelf-DirectionSystemTechniquesTechnologyTestingTherapeuticTimeTrainingTreatment outcomeValidationacceptability and feasibilityadaptive interventionbasebehavior changecost effectivedata sharingdesigndigitaldiscrete timeefficacy evaluationfeasibility testingfollow-upimprovedimproved outcomeovertreatmentprogramsself helpskillssmartphone Applicationtechnological innovationtherapy designtreatment adherencetreatment programweb site
项目摘要
PROJECT SUMMARY
Access to cognitive behavioral therapy (CBT), the first-line treatment for disorders characterized by recurrent
binge eating (i.e., eating large amounts of food within a discrete-time period, characterized by a sense of loss
of control) is limited. CBT for binge eating is intensive (16-20 sessions), expensive ($1,882 per patient), and
requires access to clinicians with specialized training. Self-help CBTs for binge eating are accessible and cost-
effective, however, outcomes are best when the self-help treatment is paired with periodic contact with a highly
trained clinician. Clinicians likely improve outcomes because they are trained to utilize specific behavior
change techniques for facilitating improvements in two key treatment targets including treatment adherence
and skills utilization during self-help CBT program. Given the limited availability of expert clinicians, it is critical
to understand how to enhance outcomes from self-help CBTs without clinician involvement.
Recent technological advancements have shown the potential to closely approximate the behavior change
techniques typically implemented by expert clinicians to enhance treatment adherence and skills utilization
during self-help CBT without clinician involvement. In particular, technology-based intervention factors such as
Advanced Digital Data Sharing with Coaches and Just-in-time adaptive interventions (JITAIs) have shown
promise in emulating behavior change techniques used by an expert clinician. Advanced Digital Data Sharing
systems can perform key behavioral tasks typically accomplished by expert clinician (e.g., identify areas for
intervention and generate recommendations on how to intervene on target behaviors). Coaches (individuals
with bachelor’s degree in health-related fields) may use the recommendations generated by this system and
provide support to patients via weekly emails for improving treatment adherence and skills utilization. Thus,
Advanced Digital Data Sharing system may allow coaches to function in a more skilled way without receiving
extensive training in behavior change techniques. JITAIs are a smartphone intervention design that conducts
real-time analysis of behavioral data related to treatment targets and determines the time of delivery and
content of momentary interventions designed to improve treatment adherence and skills use. To date, no study
has tested whether these technology-based intervention factors can independently and synergistically improve
treatment targets and outcomes from self-help CBTs for binge eating without clinician involvement.
The proposed study will use a full factorial design with 76 individuals with binge eating to identify the
independent and combined synergistic efficacies of two intervention factors (i.e., Advanced Digital Data
Sharing with Coaches and JITAIs) hypothesized to 1) improve treatment adherence and skills utilization, and
2) enhance treatment outcomes when combined with a self-help CBT program without clinician involvement.
Results of the study will inform development of effective and highly disseminable self-help CBT program for
binge eating.
项目概要
获得认知行为疗法 (CBT),这是治疗以复发为特征的疾病的一线疗法
暴饮暴食(即在不连续的时间内吃大量食物,其特征是失落感
治疗暴饮暴食的 CBT 强度大(16-20 次),价格昂贵(每位患者 1,882 美元),而且
需要接受专门的培训来适应暴饮暴食的自助 CBT 是可行的,并且成本低廉。
然而,当自助治疗与定期接触高度重视的人相结合时,结果是最好的。
训练有素的临床医生可能会改善结果,因为他们接受过利用特定行为的培训。
改变技术以促进改善两个关键治疗目标,包括治疗依从性
鉴于专家的可用性有限,这一点至关重要。
了解如何在没有临床医生参与的情况下提高自助 CBT 的效果。
最近的技术进步已经显示出接近行为变化的潜力
通常由专家支持者实施的技术,以提高治疗依从性和技能利用率
在没有临床医生参与的自助 CBT 过程中,特别是基于技术的干预因素,例如
与教练的高级数字数据共享和及时适应性干预 (JITAI) 已表明
承诺模拟专家临床医生使用的行为改变技术。
系统可以执行通常由临床专家完成的关键行为任务(例如,确定需要治疗的领域)
干预并就如何干预目标行为提出建议)。
拥有健康相关领域的学士学位)可以使用该系统生成的建议,并且
通过每周电子邮件向患者提供支持,以提高治疗依从性和技能利用率。
先进的数字数据共享系统可以让教练以更熟练的方式发挥作用,而无需接收信息
JITAI 是一种智能手机干预设计,可进行行为改变技术的广泛培训。
实时分析与治疗目标相关的行为数据并确定交付时间和
迄今为止,还没有研究旨在提高治疗依从性和技能使用的临时干预措施的内容。
测试了这些基于技术的干预因素是否能够独立和协同地改善
无需临床医生参与的暴食自助 CBT 的治疗目标和结果。
拟议的研究将采用全析因设计,对 76 名暴食者进行了研究,以确定
两个干预因素(即高级数字数据)的独立和组合协同效应
与教练和 JITAI 分享) 受到追捧,以 1) 提高治疗依从性和技能利用率,以及
2) 与无需临床医生参与的自助 CBT 计划相结合,可提高治疗效果。
研究结果将为制定有效且高度传播的自助 CBT 计划提供信息
暴饮暴食。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paakhi Srivastava其他文献
Paakhi Srivastava的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Development of the AI-driven model for anti-SUD drug development based on neuronal plasticity
基于神经元可塑性的人工智能驱动抗SUD药物开发模型的开发
- 批准号:
10467528 - 财政年份:2022
- 资助金额:
$ 22.73万 - 项目类别:
Reducing Adolescent Suicide Risk: Safety, Efficacy, and Connectome Phenotypes of Intravenous Ketamine
降低青少年自杀风险:静脉注射氯胺酮的安全性、功效和连接组表型
- 批准号:
10115222 - 财政年份:2020
- 资助金额:
$ 22.73万 - 项目类别:
Reducing Adolescent Suicide Risk: Safety, Efficacy, and Connectome Phenotypes of Intravenous Ketamine
降低青少年自杀风险:静脉注射氯胺酮的安全性、功效和连接组表型
- 批准号:
10689070 - 财政年份:2020
- 资助金额:
$ 22.73万 - 项目类别:
Reducing Adolescent Suicide Risk: Safety, Efficacy, and Connectome Phenotypes of Intravenous Ketamine
降低青少年自杀风险:静脉注射氯胺酮的安全性、功效和连接组表型
- 批准号:
10468840 - 财政年份:2020
- 资助金额:
$ 22.73万 - 项目类别:
Reducing Adolescent Suicide Risk: Safety, Efficacy, and Connectome Phenotypes of Intravenous Ketamine
降低青少年自杀风险:静脉注射氯胺酮的安全性、功效和连接组表型
- 批准号:
10263371 - 财政年份:2020
- 资助金额:
$ 22.73万 - 项目类别: