Phosphatidylinositol 3-Phosphate in the Regulation of Autophagic Membrane Remodeling
磷脂酰肌醇 3-磷酸在自噬膜重塑调节中的作用
基本信息
- 批准号:10506784
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-07 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:1-Phosphatidylinositol 3-KinaseAcuteAddressAdvisory CommitteesArchitectureAutomobile DrivingAutophagocytosisAutophagosomeAwardBindingBiochemicalBiogenesisBiologicalBiological AssayBiophysicsCell physiologyCellsChemicalsCoupledDataDiabetes MellitusDiffusionDiseaseDisease OutcomeEndoplasmic ReticulumEnsureEnvironmentEventFunctional disorderFutureGenerationsGeneticGoalsIn VitroIntracellular MembranesLeadLegionellaLegionella pneumophilaLinkLipidsLysosomesMalignant NeoplasmsMediatingMedical centerMembraneMembrane BiologyMethodsModelingMolecularN-terminalNerve DegenerationOrganellesOutcomePathologic ProcessesPathway interactionsPatternPhasePhosphatidylinositolsPhosphoric Monoester HydrolasesPhosphotransferasesPhysiological ProcessesPlayProteinsReactionRegulationResearchResearch PersonnelResearch TrainingRoleScientistSiteStructureSystemTestingTheoretical modelTherapeuticTrainingTubular formationVesicleVps34 Phosphatidylinositol 3 Kinasebiophysical techniquescareercareer developmentchronic infectionhuman diseasein silicoinnovationlive cell imagingmembrane modelnovel therapeutic interventionoptogeneticspathogenpathogenic bacteriaphosphatidylinositol 3-phosphatephosphatidylinositol-3-phosphataseprotein degradationquantitative imagingreconstitutionrecruitresearch and developmentskillsspatiotemporalsuccesstool
项目摘要
PROJECT SUMMARY/ABSTRACT
Autophagy is a fundamental cellular process mediating lysosome-dependent degradation of proteins, organelles,
and intracellular pathogens. Dysfunction of autophagy is associated with many diseases, including cancer,
neurodegeneration, diabetes, and chronic infections. Better elucidation of the molecular mechanisms for
autophagy may inspire new therapeutic approaches to these diseases. Autophagy initiation occurs at
endoplasmic reticulum (ER) subdomains enriched with phosphatidylinositol 3-phosphate (PI3P). Autophagy is
blocked when depleting or inactivating VPS34, the phosphatidylinositol (PI) 3-kinase responsible for PI3P
synthesis during autophagy. Nevertheless, how PI3P contributes to membrane remodeling events crucial for
autophagosome biogenesis remains elusive. Much is also unknown about how PI3P synthesis and turnover are
orchestrated at autophagy initiation sites. Dr. Hsieh recently discovered that the Legionella PI 3-kinase MavQ
generates PI3P on the ER and drives membrane remodeling. He also found that MavQ is coupled with the
Legionella PI 3-phosphatase SidP to spatiotemporally modulate PI3P levels at ER subdomains, inducing
vesicle/tubule budding. The striking similarity between this pathological process and autophagy initiation
prompts Dr. Hsieh to dissect the molecular and physical factors that PI3P brings for autophagic membrane
remodeling. Moreover, the current technical hurdles in tackling this question can mostly be cleared by using
MavQ and SidP as tools. In Dr. Hsieh’s proposed research, Aim 1 will develop optogenetic methods to control
PI3P generation in the cell and determine how PI3P regulates autophagic membrane remodeling using live-cell
imaging and systematic genetic perturbations. Aim 2 will combine in vitro biophysical assays, optogenetic
control, and quantitative imaging to elucidate how PI3P domain formation leads to membrane remodeling. Aim
3 will reconstitute a reaction-diffusion system in vitro and use this system to determine how PI 3-kinases and
phosphatases drive the formation of PI3P-enriched membrane subdomains. Dr. Hsieh’s career goal is to become
a leader in cell biophysics and membrane biology, focusing on physiological and pathological processes
involving membrane remodeling. Training during the award period will prepare him to lead an independent
research group using cell biological, biochemical, and biophysical approaches to understand the mechanistic
basis of autophagic membrane remodeling. UT Southwestern Medical Center provides an excellent environment
to aid Dr. Hsieh’s proposed research and career development. Dr. Hsieh has also set up an advisory committee
consisting of leading scientists with complementary research expertise. Under their guidance, Dr. Hsieh will
receive the necessary research training, such as preparing and using various model membrane systems, and
further develop professional skills during the award period. These will significantly facilitate Dr. Hsieh's
transition into an independent investigator and ensure his future success.
项目概要/摘要
自噬是介导溶酶体依赖性蛋白质、细胞器、
和细胞内病原体的自噬功能障碍与许多疾病有关,包括癌症,
更好地阐明神经退行性变、糖尿病和慢性感染的分子机制。
自噬可能会激发这些疾病的新治疗方法。
富含磷脂酰肌醇 3-磷酸 (PI3P) 的内质网 (ER) 子结构域是自噬。
当耗尽或灭活 VPS34(负责 PI3P 的磷脂酰肌醇 (PI) 3-激酶)时,会被阻断
然而,PI3P 如何促进膜重塑事件对于细胞膜重塑至关重要。
自噬体的生物发生仍然难以捉摸,关于 PI3P 的合成和周转如何也还不清楚。
Hsieh 博士最近发现军团菌 PI 3 激酶 MavQ
他还发现 MavQ 与 ER 上产生 PI3P 并驱动膜重塑。
军团菌 PI 3-磷酸酶 SidP 时空调节 ER 子域的 PI3P 水平,诱导
这种病理过程与自噬起始之间惊人的相似。
促使谢博士剖析PI3P为自噬膜带来的分子和物理因素
此外,目前解决这个问题的技术障碍大部分可以通过使用来解决。
在Hsieh博士提出的研究中,Aim 1将开发光遗传学方法来控制。
细胞中 PI3P 的生成并利用活细胞确定 PI3P 如何调节自噬膜重塑
目标 2 将结合体外生物物理测定和光遗传学测定。
控制和定量成像来阐明 PI3P 结构域的形成如何导致膜重塑。
3 将在体外重建反应扩散系统,并使用该系统来确定 PI 3-激酶和
磷酸酶驱动富含 PI3P 的膜子域的形成。谢博士的职业目标是成为。
细胞生物物理学和膜生物学领域的领导者,专注于生理和病理过程
获奖期间涉及膜重塑的培训将为他领导独立做好准备。
研究小组使用细胞生物学、生物化学和生物物理方法来了解其机制
UT西南医学中心为自噬膜重塑的基础提供了良好的环境。
为了帮助谢博士提出的研究和职业发展,谢博士还成立了一个咨询委员会。
谢博士将由具有互补研究专业知识的顶尖科学家组成。
接受必要的研究培训,例如准备和使用各种模型膜系统,以及
在获奖期间进一步发展专业技能,这将极大地促进谢博士的发展。
转变为一名独立调查员并确保他未来的成功。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ting-Sung Hsieh其他文献
Ting-Sung Hsieh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ting-Sung Hsieh', 18)}}的其他基金
Phosphatidylinositol 3-Phosphate in the Regulation of Autophagic Membrane Remodeling
磷脂酰肌醇 3-磷酸在自噬膜重塑调节中的作用
- 批准号:
10700167 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
相似国自然基金
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Tenascin-X对急性肾损伤血管内皮细胞的保护作用及机制研究
- 批准号:82300764
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ACSS2介导的乙酰辅酶a合成在巨噬细胞组蛋白乙酰化及急性肺损伤发病中的作用机制研究
- 批准号:82370084
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
KIF5B调控隧道纳米管介导的线粒体转运对FLT3-ITD阳性急性髓系白血病的作用机制
- 批准号:82370175
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
PHF6突变通过相分离调控YTHDC2-m6A-SREBP2信号轴促进急性T淋巴细胞白血病发生发展的机制研究
- 批准号:82370165
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Novel use of PI3K inhibition to prevent recurrence of B-cell acute lymphoblastic leukemia
PI3K 抑制预防 B 细胞急性淋巴细胞白血病复发的新用途
- 批准号:
10455633 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
Novel use of PI3K inhibition to prevent recurrence of B-cell acute lymphoblastic leukemia
PI3K 抑制预防 B 细胞急性淋巴细胞白血病复发的新用途
- 批准号:
10289183 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
The Na/K-ATPase receptor function as a novel therapeutic target in myocardial infarction
Na/K-ATP酶受体作为心肌梗死的新型治疗靶点
- 批准号:
9813314 - 财政年份:2019
- 资助金额:
$ 10万 - 项目类别:
Acutely Induced Insulin Resistance by Antipsychotic Medication in Healthy Volunteers: Impact of Skeletal Muscle Epigenomic and Proteomic Mechanisms
健康志愿者抗精神病药物急性诱导胰岛素抵抗:骨骼肌表观基因组和蛋白质组机制的影响
- 批准号:
10220957 - 财政年份:2018
- 资助金额:
$ 10万 - 项目类别: