A framework for feasible translation to enhance foot and ankle function in aging and mobility
一个可行的翻译框架,以增强足部和脚踝在衰老和活动中的功能
基本信息
- 批准号:10501648
- 负责人:
- 金额:$ 56.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAgeAgingAnkleBenchmarkingBioenergeticsBiomechanicsClinicalClinical ManagementConsumptionDataDevicesDistalElastic TissueElasticityElderlyExhibitsFoot joint structureGaitGenerationsHumanImpairmentInstitutionIntramuscularLocomotionMeasurableMeasurementMechanicsMetabolicMetatarsal bone structureModelingModificationMotor ActivityMuscleOutcomeOutputPerformancePhasePlayPublic HealthQuality of lifeRegulationResearchResearch InfrastructureResearch PersonnelRoleSelf-Help DevicesSeriesShoesSpeedStructureSystemTestingTissue imagingTranslationsUltrasonographyWalkingWorkachilles tendonage effectage relatedaging populationankle jointaponeurosiscarbon fibercostcost effectivedesignefficacy testingelectromyographic biofeedbackfootfunctional disabilityimprovedimproved mobilityin vivoinsightjoint functionmechanical energymuscle strengthnegative affectnovelpeerresponsestrength trainingtransmission processyoung adult
项目摘要
PROJECT SUMMARY
This proposal will address the critical need for new and modifiable targets to enhance mobility and restore
independence to those in our rapidly aging population. Due to reduced ankle push-off power, older adults walk
slower and with higher metabolic energy cost than younger adults. As our central premise, we contend that
hallmark age-associated deficits in push-off intensity during walking have been far too often mistakenly
attributed solely to the plantarflexor muscles, and instead originate interdependently with those in the active,
passive, and structural regulation of foot mechanical power. This premise paves the way for translational
opportunities to augment foot structure and function to enhance independence and quality of life. This study
combines the research agendas of two highly productive investigators and leverages the research infrastructure
of two peer institutions. Aim 1 will be the first to study mechanical power interactions between the human foot
and ankle in governing reduced push-off intensity and walking economy in older adults across a wide variety of
everyday walking tasks. By combining metabolic measurements with state-of-the-art biomechanical and
bioenergetic modeling, we will test the hypothesis that older adults exhibit higher mechanical energy losses via
foot structures than young adults – aging effects that: (i) are larger for walking tasks that increase foot demand,
(ii) misappropriate ankle moment and power during push-off, and thereby (iii) correlate with shorter 6 min walk
distance and increased metabolic energy cost compared to young adults. Aim 2 will provide mechanistic insight
into aging effects on the active, passive, and structural regulation of foot-ankle mechanical power interactions
during walking. Using a series of controlled loading paradigms on a dynamometer combined with advanced in
vivo ultrasound imaging and novel electromyographic biofeedback, we will test the hypotheses that older adults
exhibit: (i) reduced foot and plantarflexor muscle strength and (ii) lower structural stiffness of and (iii) reduced
structural connectivity between series elastic tissues spanning the foot and ankle – changes that require elevated
plantar intrinsic muscle activation to maintain requisite foot stiffness and associate with reduced ankle moment
and power output during push-off in walking. Finally, as a translational benchmark, Aim 3 will show that shoe-
stiffness modifications that act in parallel with the plantar aponeurosis and intrinsic muscles can mitigate age-
associated deficits in push-off function during walking. Supported by promising pilot data, we will test the
hypotheses that older adults walking with increased shoe insole stiffness will exhibit: (i) smaller mechanical
energy losses at the foot, (ii) more favorable plantarflexor muscle contractile dynamics, (iii) greater peak ankle
moment and power output, and thus (iv) longer 6 min walk distance and reduced whole-body metabolic energy
cost. Ultimately, this work will establish a paradigm shift in our biomechanical understanding and clinical
management of age-related mobility impairment toward feasible and cost-effective devices to modify foot-ankle
function – an outcome with significant potential to enhance independence and quality of life for millions.
项目摘要
该建议将满足对新目标的关键需求,以增强移动性和恢复
对我们迅速老龄化的人的独立性。由于脚踝推断降低,老年人走路
比年轻人慢,代谢能量成本更高。作为我们的中心前提,我们认为
在步行期间,标志性年龄相关的推断强度的防御能力频繁地错误地被误认为
仅归因于足底肌肉,而是与活动中的肌肉相互依存,
被动和脚的结构调节。这个前提为翻译铺平了道路
增强脚结构和功能以增强独立性和生活质量的机会。这项研究
结合了两个高产研究人员的研究议程,并利用了研究基础设施
两个同行机构。 AIM 1将是第一个研究人脚之间机械功率相互作用的人
以及管理降低的推断强度和步行经济的脚踝,老年人在各种各样的地方
日常行走任务。通过将代谢测量与最先进的生物力学相结合
生物能建模,我们将检验以下假设:老年人通过
脚结构比年轻人 - 衰老的影响:(i)对于增加脚步需求的步行任务更大,
(ii)推开期间误导的脚踝时刻和力量,从而(iii)与短步行6分钟相关
与年轻人相比,距离和代谢能量成本增加。 AIM 2将提供机械洞察力
对脚部机械功率相互作用的主动,被动和结构调节的衰老影响
在步行期间。在测功机上使用一系列受控的加载范例与高级
体内超声成像和新型肌电图生物反馈,我们将测试老年人的假设
暴露:(i)脚和足底肌肉力量减小,以及(ii)降低的结构刚度和(iii)降低
横跨脚和踝关节的串联弹性组织之间的结构连通性 - 需要升高的变化
足底固有的肌肉激活以保持必要的脚部刚度,并与脚踝降低相关
和在行走时推开期间的功率输出。最后,作为转化基准,AIM 3将表明鞋子 -
与足底肌病和内在肌肉并行作用的刚度修饰可以减轻年龄
关联在步行过程中定义推断功能。在有希望的飞行员数据的支持下,我们将测试
假设老年人以增加鞋底鞋垫僵硬而行走的老年人将存在:(i)较小的机械
脚部的能量损失,(ii)更有利的足底肌肉收缩动力学,(iii)大峰踝
力矩和功率输出,因此(iv)更长的6分钟步行距离和减少全身代谢能量
成本。最终,这项工作将在我们的生物力学理解和临床上建立范式转变
管理与年龄相关的行动不便障碍对可行且具有成本效益的设备,以修改脚部
功能 - 具有巨大潜力增强独立性和生活质量的巨大潜力的结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason R Franz其他文献
Jason R Franz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jason R Franz', 18)}}的其他基金
A framework for feasible translation to enhance foot and ankle function in aging and mobility
一个可行的翻译框架,以增强足部和脚踝在衰老和活动中的功能
- 批准号:
10704158 - 财政年份:2022
- 资助金额:
$ 56.07万 - 项目类别:
The peripheral motor repertoire as a neuromuscular constraint on walking balance integrity in age-related falls risk
外周运动指令作为神经肌肉约束对年龄相关跌倒风险中步行平衡完整性的影响
- 批准号:
10266818 - 财政年份:2020
- 资助金额:
$ 56.07万 - 项目类别:
In vivo Manipulation of Mechanical Loading: Using Real-time Biofeedback to Strategically Understand the Acute Biomechanical, Biochemical and Structural Changes Induced by Lower Extremity Loading
机械负荷的体内操纵:利用实时生物反馈有策略地了解下肢负荷引起的急性生物力学、生化和结构变化
- 批准号:
9762843 - 财政年份:2018
- 资助金额:
$ 56.07万 - 项目类别:
Dynamic imaging to guide wearable robotic intervention for enhanced mobility in aging
动态成像指导可穿戴机器人干预以增强衰老过程中的活动能力
- 批准号:
9920637 - 财政年份:2018
- 资助金额:
$ 56.07万 - 项目类别:
Dynamic imaging to guide wearable robotic intervention for enhanced mobility in aging
动态成像指导可穿戴机器人干预以增强衰老过程中的活动能力
- 批准号:
10402260 - 财政年份:2018
- 资助金额:
$ 56.07万 - 项目类别:
Dynamic imaging to guide wearable robotic intervention for enhanced mobility in aging
动态成像指导可穿戴机器人干预以增强衰老过程中的活动能力
- 批准号:
9750576 - 财政年份:2018
- 资助金额:
$ 56.07万 - 项目类别:
Dynamic imaging to guide wearable robotic intervention for enhanced mobility in aging
动态成像指导可穿戴机器人干预以增强衰老过程中的活动能力
- 批准号:
10209130 - 财政年份:2018
- 资助金额:
$ 56.07万 - 项目类别:
The Sensorimotor Locus of Balance Control in Elderly Gait
老年人步态平衡控制的感觉运动轨迹
- 批准号:
9566373 - 财政年份:2017
- 资助金额:
$ 56.07万 - 项目类别:
Mechanics of the Aging Achilles tendon with implications for walking performance
老化跟腱的力学对步行性能的影响
- 批准号:
8524190 - 财政年份:2013
- 资助金额:
$ 56.07万 - 项目类别:
Mechanics of the Aging Achilles tendon with implications for walking performance
老化跟腱的力学对步行性能的影响
- 批准号:
8701027 - 财政年份:2013
- 资助金额:
$ 56.07万 - 项目类别:
相似国自然基金
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
恒星模型中氧元素丰度的变化对大样本F、G、K矮星年龄测定的影响
- 批准号:12303035
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于年龄和空间的非随机混合对性传播感染影响的建模与研究
- 批准号:12301629
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
母传抗体水平和疫苗初种年龄对儿童麻疹特异性抗体动态变化的影响
- 批准号:82304205
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
中国东部地区大气颗粒物的年龄分布特征及其影响因素的模拟研究
- 批准号:42305193
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
$ 56.07万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 56.07万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 56.07万 - 项目类别:
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 56.07万 - 项目类别:
Identifying and Addressing the Effects of Social Media Use on Young Adults' E-Cigarette Use: A Solutions-Oriented Approach
识别和解决社交媒体使用对年轻人电子烟使用的影响:面向解决方案的方法
- 批准号:
10525098 - 财政年份:2023
- 资助金额:
$ 56.07万 - 项目类别: