TRD3: Endoscopic and Probe-based Coherence Imaging
TRD3:内窥镜和基于探头的相干成像
基本信息
- 批准号:10494623
- 负责人:
- 金额:$ 31.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-21 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAlgorithmsArchitectureAxonBirefringenceBlood flowBrainCathetersCollagenCollectionCoronaryCoronary ArteriosclerosisCoronary arteryDataDeep Brain StimulationDevicesDiagnosisDiagnosticDiffusion Magnetic Resonance ImagingDimensionsElectrodesElementsEncapsulatedEndoscopesExhibitsFeedbackFiberFiber OpticsFundingGastrointestinal tract structureGoalsHandHumanHuman bodyImageImaging DeviceImpairmentInterventionLightLightingLungMachine LearningMapsMeasuresMethodsMicroscopicMotorMuscle CellsNeedlesNeuroanatomyNeurosurgical ProceduresOperative Surgical ProceduresOpticsOrganPathologyPatientsPerformancePhasePhysicsProceduresPropertyResearchResolutionRotationSamplingScanningSideSignal TransductionSkin CancerStagingStructureSupervisionTechniquesTimeTissuesTomogramTrainingTranslationsVariantalgorithm trainingbasebrain tissueclinical investigationcontrast imagingcostdeep learningdeep neural networkdesignexperienceflexibilitygenerative adversarial networkimaging probeimaging systemimplantationimprovedinsightinstrumentinterstitialmalignant mouth neoplasmnetwork architectureneural networkneurosurgerynovelnovel strategiessuccesstransfer learningvectorwhite matter
项目摘要
Project Summary
TRD 3
The goal of this TRD project is to enhance the power and functionality of endoscopic and probe-based OCT.
The small form factor of fiber-optic OCT probes affords the capacity to reach remote organs of the human
body, enabling OCT to be routinely used for clinical investigation of the coronary arteries, the gastrointestinal
tract, and the lung. However, many strategies to improve image contrast through advanced OCT signal
collection and processing are incompatible with the spatial and practical constraints of probe-based OCT. This
impairs diagnostic performance and feedback to guide interventions. The focus of TRD 3 is to address some of
these limitations.
OCT derives image contrast from variations in the tissue’s backscattering properties, but subtle differences in
the scattering properties can be difficult to identify because the signal from subsurface microstructure adds up
coherently, resulting in speckle. Polarization offers a complementary endogenous contrast mechanism that can
afford contrast between tissues that are indiscernible in OCT’s backscattering signal. Many tissues with a
fibrillar architecture exhibit birefringence and delay light depending on the alignment of its polarization state
with the fibrillar tissue components.
Specific Aim 1 capitalizes on tissue’s intrinsic birefringence to measure the orientation of fibrillar tissue
elements in all three spatial dimensions through fiber-optic imaging probes. This is specifically relevant for
imaging birefringent white matter tracts during stereotactic neurosurgery in the brain. Imaging probes
containing two imaging channels at distinct illumination angles and interfaced through a multi-channel motor
drive unit will be fabricated. Algorithms that leverage the multiple imaging angles and observe additional
continuity constraints will be developed to reconstruct 3D vectorial birefringence. Visualizing the 3D orientation
of axonal tracts surrounding an intracranial probe will enable microscopic guidance of stereotactic procedures,
such as the implantation of stimulation electrodes for deep brain stimulation.
Specific Aim 2 responds to the persistent challenge of speckle in OCT by leveraging machine learning to
encapsulate the physical meaning of hardware-based speckle suppression into a trained algorithm. A novel
method to generate ground truth speckle-suppressed tomograms using sample tilting for angular compounding
will be developed to enable supervised training of a deep neural network. The specific challenge of deploying
the trained algorithm to new imaging systems will be addressed by developing both a supervised and an
unsupervised method for domain adaptation. Improved image contrast and speckle suppression are critical for
interpretation of many tissue pathologies, including, e.g., the diagnosis and staging of skin and oral cancer.
Combined, these efforts will improve the contrast achievable with probe-based OCT, thereby enhancing its
practical use and extending its utility to new applications where decisive contrast has been lacking.
项目概要
TRD 3
该 TRD 项目的目标是增强内窥镜和基于探头的 OCT 的性能和功能。
光纤 OCT 探头外形小巧,能够到达人体的远程器官
使 OCT 能够常规用于冠状动脉、胃肠道的临床检查
然而,有许多策略可以通过先进的 OCT 信号来提高图像对比度。
采集和处理与基于探针的 OCT 的空间和实际限制不相容。
损害诊断性能和指导干预措施的反馈。TRD 3 的重点是解决其中的一些问题。
这些限制。
OCT 从组织反向散射特性的变化中得出图像对比度,但细微的差异
散射特性可能很难识别,因为来自地下微观结构的信号会累加起来
相干地产生散斑,提供了一种互补的内源对比度机制。
提供 OCT 反向散射信号中难以辨别的组织之间的对比度。
纤维结构表现出双折射并延迟光,具体取决于其偏振态的排列
与纤维组织成分。
具体目标 1 利用组织的固有双折射来测量纤维组织的方向
通过光纤成像探头在所有三个空间维度上的元素这特别相关。
在大脑立体定向神经外科手术中对双折射白质束进行成像。
包含两个具有不同照明角度的成像通道,并通过多通道电机连接
将制造利用多个成像角度并观察额外的算法。
将开发连续性约束来重建 3D 矢量双折射,使 3D 方向可视化。
颅内探针周围的轴突束将能够实现立体定向手术的显微引导,
例如植入刺激电极进行深部脑刺激。
具体目标 2 通过利用机器学习来应对 OCT 中散斑的持续挑战
将基于硬件的散斑抑制的物理意义封装到训练有素的算法中。
使用样本倾斜进行角度复合来生成地面真实散斑抑制断层图的方法
将开发用于实现深度神经网络的监督训练的具体挑战。
新成像系统的训练算法将通过开发监督和
改进图像对比度和斑点抑制的无监督方法对于域适应至关重要。
对许多组织病理学的解释,包括皮肤癌和口腔癌的诊断和分期。
结合起来,这些努力将提高基于探针的 OCT 所能实现的对比度,从而增强其
实际用途并将其实用性扩展到缺乏决定性对比的新应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Martin Villiger其他文献
Martin Villiger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Martin Villiger', 18)}}的其他基金
Quantitative imaging of collagen morphology in human scars
人类疤痕中胶原形态的定量成像
- 批准号:
9544197 - 财政年份:2017
- 资助金额:
$ 31.92万 - 项目类别:
TRD3: Endoscopic and Probe-based Coherence Imaging
TRD3:内窥镜和基于探头的相干成像
- 批准号:
10650844 - 财政年份:2011
- 资助金额:
$ 31.92万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 31.92万 - 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 31.92万 - 项目类别:
Computer-Aided Triage of Body CT Scans with Deep Learning
利用深度学习对身体 CT 扫描进行计算机辅助分类
- 批准号:
10585553 - 财政年份:2023
- 资助金额:
$ 31.92万 - 项目类别:
High-resolution cerebral microvascular imaging for characterizing vascular dysfunction in Alzheimer's disease mouse model
高分辨率脑微血管成像用于表征阿尔茨海默病小鼠模型的血管功能障碍
- 批准号:
10848559 - 财政年份:2023
- 资助金额:
$ 31.92万 - 项目类别:
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
- 批准号:
10831226 - 财政年份:2023
- 资助金额:
$ 31.92万 - 项目类别: