Administrative supplement - Childcare
行政补助 - 儿童保育
基本信息
- 批准号:10493714
- 负责人:
- 金额:$ 0.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcuteAdministrative SupplementAffectAmericanAnoxiaAntioxidantsAutomobile DrivingBioenergeticsBiological ProcessCardiacCardiac MyocytesCardiogenic ShockCardiomyopathiesCardiopulmonary ResuscitationCell modelChronicClinicalDNADNA DamageDNA Repair EnzymesDataDepressed moodDevelopmentDiffuseDisease modelDoseEFRACElectron TransportElectronsGenesGeneticGenomeHeartHeart ArrestHeart DiseasesHospitalsHypertrophyImpairmentInflammationInjuryIntensive CareInterventionIschemiaLeadLinkMediatingMethodsMitochondriaMitochondrial DNAMitochondrial MatrixModelingMolecularMorphologyMultiple Organ FailureMyocardial dysfunctionNeurological statusNuclearOrganOutcomeOxidantsOxygenPathway interactionsPatientsPharmacologic SubstancePharmacologyProductionProteinsReactive Oxygen SpeciesRegulationReperfusion InjuryReperfusion TherapyResuscitationSecondary toStressStructureSurvivorsSymptomsSyndromeTestingTherapeuticTransgenic MiceWorkantioxidant therapyassociated symptomcardioprotectionfactor Aheart functionheart preservationimprovedimproved outcomein vitro Modelin vivomortalitymouse modelmtTF1 transcription factornatural hypothermianew therapeutic targetnovelnovel strategiesnovel therapeutic interventionnovel therapeuticsoverexpressionoxidative damagepreservationpreventsurvival outcomesymptomatic improvementtranscription factor
项目摘要
Abstract
Sudden cardiac arrest is highly prevalent and results in overwhelming mortality. Unfortunately, there are no
pharmacologic therapies that have been shown to reliably increase survival after sudden cardiac arrest.
Survivors of sudden cardiac arrest typically have systemic organ damage requiring intensive care in the
hospital. The majority of these patients have reduced cardiac function and one quarter of these patients die
from cardiogenic shock. One of the mechanisms driving cardiac dysfunction after cardiac arrest and
resuscitation is the production of reactive oxygen species (ROS) in the heart, particularly in the mitochondria.
Mitochondrial ROS is known to cause damage to nearby mitochondrial DNA (mtDNA), which are crucial for
maintaining mitochondrial function. Preliminary work in our lab has shown that methods aimed at preserving
mtDNA integrity, including mitochondrial targeted antioxidant therapy and overexpression of mitochondrial
transcription factor A (TFAM), are protective to cardiac function in a mouse model of sudden cardiac arrest.
TFAM is a nuclear gene that regulates mtDNA expression, packaging, and copy number and is known to be
protective in a number of heart disease models.
My overarching hypothesis is that ischemia-reperfusion injury from cardiac arrest results in mtDNA damage
secondary to mitochondrial ROS production, leading to impaired electron transport chain protein regulation and
cardiac dysfunction. To explore this hypothesis, I will pursue two specific aims. In Aim 1, I will test the link
between cardiac arrest, ROS production, mtDNA damage, and cardiac function using mitochondrial
antioxidants in an in vivo mouse model of cardiac arrest as well as a cellular model of ischemia-reperfusion. In
Aim 2, I will test whether the levels of TFAM specifically in the cardiomyocytes modulate the development of
cardiomyopathy and survival in the cardiac arrest model.
Together, these aims will demonstrate that mtDNA damage following cardiac arrest is mediated by
mitochondrial ROS and contributes to post-arrest cardiomyopathy. Further, they will show that these changes
can be prevented by mitochondrial ROS scavenging and manipulation of TFAM, which may be targets for
novel therapeutic interventions in cardiac arrest patients.
抽象的
突然的心脏骤停非常普遍,导致压倒性的死亡率。不幸的是,没有
已证明心脏骤停后可靠地增加生存率的药理学疗法。
突然心脏骤停的幸存者通常会有系统性的器官损害,需要重症监护
医院。这些患者的大多数患者的心脏功能降低,其中四分之一的患者死亡
来自心脏病性休克。心脏骤停后驱动心脏功能障碍的机制之一和
复苏是心脏中的活性氧(ROS)的产生,尤其是在线粒体中。
已知线粒体ROS会损害附近的线粒体DNA(mtDNA),这对于至关重要
维持线粒体功能。我们实验室的初步工作表明,旨在保存的方法
mtDNA完整性,包括线粒体靶向抗氧化剂疗法和线粒体的过表达
转录因子A(TFAM)在心脏骤停的小鼠模型中对心脏功能具有保护作用。
TFAM是一种调节mtDNA表达,包装和拷贝数的核基因,已知为
在许多心脏病模型中保护性。
我的总体假设是,心脏骤停导致mtDNA损害导致心脏骤停的局部性再灌注损伤
线粒体ROS的继发性产生,导致电子传输链蛋白质调节受损和
心脏功能障碍。为了探讨这一假设,我将追求两个具体的目标。在AIM 1中,我将测试链接
使用线粒体之间的心脏骤停,ROS产生,mtDNA损伤和心脏功能
心脏骤停的体内小鼠模型中的抗氧化剂以及缺血再灌注的细胞模型。在
AIM 2,我将测试心肌细胞中TFAM的水平是否专门调节
心肌病模型中的心肌病和生存。
这些目的共同证明心脏骤停后的mtDNA损伤是由
线粒体ROS,并导致后心肌病后。此外,他们将表明这些变化
线粒体ROS清除和TFAM操纵可以防止
心脏骤停患者的新型治疗干预措施。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cody Rutledge其他文献
Cody Rutledge的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cody Rutledge', 18)}}的其他基金
The Role of Mitochondrial DNA in Innate Immune Activation after Sudden CardiacArrest
线粒体 DNA 在心脏骤停后先天免疫激活中的作用
- 批准号:
10480315 - 财政年份:2022
- 资助金额:
$ 0.23万 - 项目类别:
The Role of Mitochondrial DNA in Innate Immune Activation after Sudden CardiacArrest
线粒体 DNA 在心脏骤停后先天免疫激活中的作用
- 批准号:
10656384 - 财政年份:2022
- 资助金额:
$ 0.23万 - 项目类别:
相似海外基金
I-TRANSFER Improving TRansitions ANd outcomeS oF sEpsis suRvivors
I-TRANSFER 改善脓毒症幸存者的转变和结果
- 批准号:
10824878 - 财政年份:2023
- 资助金额:
$ 0.23万 - 项目类别:
Developing a culturally adapted implementation program for teleophthalmology use in Latinx communities
制定适合拉丁裔社区远程眼科使用的文化适应实施计划
- 批准号:
10771837 - 财政年份:2023
- 资助金额:
$ 0.23万 - 项目类别:
Function of RUNX1 in diverse Down syndrome tissues
RUNX1在多种唐氏综合症组织中的功能
- 批准号:
10853906 - 财政年份:2023
- 资助金额:
$ 0.23万 - 项目类别: