Spinal Cord Associative Plasticity
脊髓关联可塑性
基本信息
- 批准号:10487487
- 负责人:
- 金额:$ 50.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-10 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAnatomyBehavioralBrainCaliberCervicalCervical spinal cord injuryCervical spinal cord structureChronicClinicalDataDiseaseElectric StimulationElectrodesEngineeringEvoked PotentialsFingersForelimbGoalsHandHand functionsHourHumanHyperreflexiaHyporeflexiaIndividualInjuryInterruptionJointsKnowledgeLearningMagnetic Resonance ImagingMeasuresMediatingMethodsMissionMotorMotor CortexMotor Evoked PotentialsMotor PathwaysMovementMuscleMuscle TensionNatureNeckNervous system structureNeural PathwaysNeurostimulation procedures of spinal cord tissueOperative Surgical ProceduresParalysedParticipantPatientsPersonsPhysiologyPositioning AttributePublic HealthRattusReflex actionResearchResidual stateSensorySpinalSpinal CordSpinal Cord DiseasesSpinal cord injuryStimulusStrokeSystemTechniquesTestingTimeTrainingTranscranial magnetic stimulationTranslatingTreatment ProtocolsUnited States National Institutes of HealthVentral Rootsarmarm functionawakedexteritydisabilityefficacy trialexperienceexperimental studyhead-to-head comparisonimprovedneural circuitpaired stimulipreservationrecruitrelating to nervous systemresponsesensorimotor systemspinal cord imagingspinal nerve posterior rootspinal pathwayspinal reflextranscutaneous stimulationtranslation to humans
项目摘要
SUMMARY
Experience leads to behavioral change through associative activity of neural circuits. Using this principle,
paired stimulation has been used to selectively strengthen circuits. We propose to target the spinal cord for
associative plasticity, exploiting strong interaction of descending motor connections and large diameter
afferents, which mediate the senses of joint position and muscle tension. In rats and humans, sub-threshold
cervical stimulation, which activates afferents, strongly augments motor cortex evoked muscle responses when
timed to converge in the spinal cord. When pairing is performed repeatedly in rats, spinal cord associative
plasticity (SCAP) is induced with a large and sustained increase in excitability. In rats with cervical spinal cord
injury (SCI), 10 days of SCAP significantly improved forelimb function. We hypothesize that SCAP will
strengthen spinal excitability, modulate reflexes, and increase pinch force in people with cervical SCI. Aim 1
tests the timing of pairing and the circuits mediating paired stimulation, key issues for proper targeting. Timing
cortical and spinal stimulation to converge in the spinal cord, as opposed to cortex, is predicted to be strongest.
We will use both non-invasive and invasive spinal cord stimulation. For non-invasive stimulation, we will
combine transcutaneous stimulation over the neck with transcranial magnetic stimulation over cortex. For
invasive stimulation, we will combine spinal epidural stimulation with transcranial electrical stimulation during
clinically indicated surgery. Aim 2 tests the effects of SCAP to produce a lasting increase in spinal excitability,
as measured by both cortical and spinal evoked potentials and pinch dynamometry. Controls will isolate the
changes induced specifically through pairing. Finally, Aim 3 tests whether paired motor cortex and cervical
spinal cord stimulation produces similar effects in people with the two most common causes of SCI, cervical
myelopathy and traumatic SCI, as uninjured participants. Spinal excitability is predicted to increase, pinch force
is expected to become stronger, and spinal reflexes are expected to diminish. The integrity of spinal pathways
will be measured with both physiology and analysis of cervical MRI. Together, these studies will fill critical gaps
about the nature of associative plasticity in the sensorimotor system and test a new strategy to strengthen
residual connections after SCI. This strategy will be tested with both invasive and non-invasive stimulation,
allowing direct comparison of these approaches for the first time. Thus, we intend to close gaps in our
understanding of how paired stimulation of sensorimotor circuits should be targeted to the spinal cord and
which residual circuits support the plasticity. This knowledge can optimize how we target electrical stimulation
to induce SCAP. Multiple methods of motor cortex and cervical spinal cord stimulation have been proven to be
safe, so these mechanistic studies can be translated quickly to efficacy trials.
概括
经验通过神经回路的联想活动导致行为改变。利用这个原理,
配对刺激已被用来选择性地加强电路。我们建议以脊髓为目标
关联可塑性,利用下降电机连接和大直径的强相互作用
传入神经,调节关节位置和肌肉张力的感觉。在大鼠和人类中,亚阈值
颈部刺激可激活传入神经,强烈增强运动皮层诱发的肌肉反应
定时汇聚于脊髓。当在大鼠中重复进行配对时,脊髓联想
可塑性(SCAP)是由兴奋性大幅持续增加引起的。在患有颈脊髓的大鼠中
损伤(SCI)后,10天的SCAP显着改善了前肢功能。我们假设 SCAP 将
增强脊髓兴奋性、调节反射并增加颈椎 SCI 患者的捏力。目标1
测试配对的时间和介导配对刺激的电路,这是正确定位的关键问题。定时
预计皮质和脊髓刺激集中在脊髓(而不是皮质)最强。
我们将使用非侵入性和侵入性脊髓刺激。对于非侵入性刺激,我们将
将颈部经皮刺激与皮质经颅磁刺激相结合。为了
侵入性刺激,我们将脊髓硬膜外刺激与经颅电刺激相结合
临床指征手术。目标 2 测试 SCAP 产生持久增加脊髓兴奋性的效果,
通过皮质和脊髓诱发电位以及捏测力测量来测量。控制将隔离
通过配对特别引起的变化。最后,Aim 3 测试运动皮层和颈椎是否配对
脊髓刺激对患有 SCI 两种最常见原因(颈椎病)的人产生类似的效果。
脊髓病和创伤性 SCI,与未受伤的参与者一样。脊髓兴奋性预计会增加,捏力
预计会变得更强,并且脊髓反射预计会减弱。脊髓通路的完整性
将通过生理学和颈部 MRI 分析进行测量。这些研究将共同填补关键空白
关于感觉运动系统中联想可塑性的本质并测试一种新的强化策略
SCI 后的残余连接。该策略将通过侵入性和非侵入性刺激进行测试,
首次允许直接比较这些方法。因此,我们打算缩小我们的差距
了解如何针对脊髓对感觉运动回路进行配对刺激,以及
哪些残余电路支持可塑性。这些知识可以优化我们针对电刺激的方式
诱导SCAP。运动皮层和颈脊髓刺激的多种方法已被证明是有效的
安全,因此这些机制研究可以快速转化为功效试验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason Brant Carmel其他文献
Jason Brant Carmel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jason Brant Carmel', 18)}}的其他基金
Paired brain and spinal cord stimulation to strengthen spinal sensorimotor circuits
配对大脑和脊髓刺激以增强脊髓感觉运动回路
- 批准号:
10622969 - 财政年份:2022
- 资助金额:
$ 50.43万 - 项目类别:
Paired brain and spinal cord stimulation to strengthen spinal sensorimotor circuits
配对大脑和脊髓刺激以增强脊髓感觉运动回路
- 批准号:
10533329 - 财政年份:2020
- 资助金额:
$ 50.43万 - 项目类别:
Paired brain and spinal cord stimulation to strengthen spinal sensorimotor circuits
配对大脑和脊髓刺激以增强脊髓感觉运动回路
- 批准号:
10156241 - 财政年份:2020
- 资助金额:
$ 50.43万 - 项目类别:
Paired brain and spinal cord stimulation to strengthen spinal sensorimotor circuits
配对大脑和脊髓刺激以增强脊髓感觉运动回路
- 批准号:
10311547 - 财政年份:2020
- 资助金额:
$ 50.43万 - 项目类别:
Advanced materials for safe and effective stimulation of the rat cervical spinal cord
安全有效刺激大鼠颈脊髓的先进材料
- 批准号:
9212133 - 财政年份:2016
- 资助金额:
$ 50.43万 - 项目类别:
Advanced materials for safe and effective stimulation of the rat cervical spinal cord
安全有效刺激大鼠颈脊髓的先进材料
- 批准号:
9035746 - 财政年份:2016
- 资助金额:
$ 50.43万 - 项目类别:
The knob supination task: a sensitive test of corticospinal function in the rat
旋钮旋后任务:大鼠皮质脊髓功能的灵敏测试
- 批准号:
9002965 - 财政年份:2015
- 资助金额:
$ 50.43万 - 项目类别:
相似国自然基金
儿童脊柱区腧穴针刺安全性的发育解剖学及三维数字化研究
- 批准号:82360892
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
寰枢椎脱位后路钉棒内固定系统复位能力优化的相关解剖学及生物力学研究
- 批准号:82272582
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于次生乳管网络结构发育比较解剖学和转录组学的橡胶树产胶机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于垂体腺瘤海绵窦侵袭模式的相关膜性解剖学及影像学研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Designing novel therapeutics for Alzheimer’s disease using structural studies of tau
利用 tau 蛋白结构研究设计治疗阿尔茨海默病的新疗法
- 批准号:
10678341 - 财政年份:2023
- 资助金额:
$ 50.43万 - 项目类别:
Role of the central nucleus of the amygdala during ethanol-rewarded instrumental tasks
杏仁核中央核在乙醇奖励的仪器任务中的作用
- 批准号:
10679383 - 财政年份:2023
- 资助金额:
$ 50.43万 - 项目类别:
Using Natural Mouse Movement to Establish a Developmental "Biomarker" for Corticospinal Damage
利用自然小鼠运动建立皮质脊髓损伤的发育“生物标志物”
- 批准号:
10667807 - 财政年份:2023
- 资助金额:
$ 50.43万 - 项目类别: