Characterizing the structure and function of a bacterial multi-kinase sensory complex
表征细菌多激酶感觉复合物的结构和功能
基本信息
- 批准号:10488627
- 负责人:
- 金额:$ 6.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-13 至 2023-09-12
- 项目状态:已结题
- 来源:
- 关键词:AdhesionsAffectAnti-Bacterial AgentsBacteriaBindingBiochemicalBioinformaticsBiological AssayBiological ModelsBiosensorCaulobacter crescentusCell AdhesionCell physiologyCellular biologyChIP-seqComplementComplexCuesDNADNA BindingDataDecision MakingDetectionDevelopmentEnvironmentEukaryotaFluorescence Resonance Energy TransferGene ExpressionGenesGenetic TranscriptionGoalsGram-Negative BacteriaHomeostasisIn VitroIndividualLinkMass Spectrum AnalysisMediatingMicrobial BiofilmsModelingMolecularNamesOutputOxidation-ReductionPAWR proteinPhasePhosphorylationPhosphotransferasesPhysiologicalPhysiological ProcessesPlayProcessProteinsProteobacteriaReactionRegulationReporterResearchRoleSensorySignal PathwaySignal TransductionStructureSurfaceSystemTestingVariantWorkX-Ray Crystallographyantimicrobialbasebiological adaptation to stresscell motilityenvironmental adaptationextracellularinformation processinginsightinterdisciplinary approachnovelpathogenic bacteriaprogramsprotein-histidine kinasereconstitutionresponsesensor histidine kinasesensory systemtargeted treatmenttranscription factoryeast two hybrid system
项目摘要
Abstract
Bacteria have an incredible capacity to sense and respond to intra- and extracellular fluctuations in the
environment in order to maintain cellular homeostasis. In bacteria, environmental adaptation is commonly
mediated by two-component systems (TCS) that consist of a sensor histidine kinase (HK) that phosphorylates a
cognate response regulator (RR) in response to signal detection. Upon phosphorylation, the RR can bind to DNA
and alter gene expression to facilitate environmental adaptation. Classical TCS have historically been thought
to signal in a highly linear manner with minimal interaction or cross-regulation with other signaling pathways. A
growing body of data from our group and others provide evidence that an unusual class of histidine kinases,
known as HWE kinases, can form multi-protein signaling complexes, creating a new paradigm in bacterial signal
transduction. These signaling systems can integrate information from numerous environmental inputs to
coordinate an array of physiological responses. In Caulobacter crescentus, one such signaling complex, hereby
referred to as the Alphaproteobacterial signalosome, has been identified to coordinately regulate cellular surface
attachment, a critical initial step in biofilm formation. We have shown that the Alphaproteobacterial signalosome
consists of a) the HWE kinase SkaH that functions as a molecular hub protein, b) the HWE kinase LovK, and c)
the classical HK, SpdS. Individually, LovK and SpdS play critical roles in modulating the general stress response
and stationary phase adaptation. Interestingly, sensory information from LovK and SpdS can be integrated
through the signalosome to modulate cellular adhesion through the downstream transcription factors, RtrA and
RtrB, and the hypothetical protein, RtrC. Preliminary data provides evidence that the signalosome is comprised
of additional HWE and classical HK kinases, suggesting that the sensory complex can integrate a broader range
of signals than previously suspected. The research proposed here takes a multidisciplinary approach to
characterize the structure and function of the HWE signalosome. The first aim will use biochemical approaches
and mass spectrometry to identify molecular partners of SkaH and dissect direct interactions within the
signalosome. The second aim will complement the structural analysis of the signalosome by using biochemical
approaches to analyze the signal flow through the signalosome components. Preliminary evidence suggests that
the hypothetical protein, RtrC, is a cryptic transcription factor that functions as a critical output for the HWE
signalosome. In the third aim, I will characterize the structure and function of RtrC with X-ray crystallography and
fluorescent reporters. Additionally, I will use FRET-based biosensors and motility assays to examine the
regulatory link between RtrC and c-di-GMP signaling. The HWE signalosome serves as a prime model system
for examining how multi-kinase sensory systems detect and process complex environmental information in order
to regulate physiological responses. Additionally, as HWE kinases are present in many bacterial pathogens,
insights gained from this work will aid in the development of antibacterial therapies that target TCS.
抽象的
细菌具有令人难以置信的能力来感知和响应细胞内和细胞外的波动
环境以维持细胞稳态。在细菌中,环境适应通常是
由双组分系统 (TCS) 介导,该系统由传感器组氨酸激酶 (HK) 组成,可磷酸化
同源响应调节器(RR)响应信号检测。磷酸化后,RR 可以与 DNA 结合
并改变基因表达以促进环境适应。传统的 TCS 历来被认为
以高度线性的方式发出信号,与其他信号传导途径的相互作用或交叉调节最小化。一个
我们小组和其他人的越来越多的数据提供了证据表明一类不寻常的组氨酸激酶,
被称为 HWE 激酶,可以形成多蛋白信号复合物,创造细菌信号的新范例
转导。这些信号系统可以将来自众多环境输入的信息集成到
协调一系列生理反应。在新月柄杆菌中,一种这样的信号复合物,特此
被称为 Alphaproteobacterial 信号体,已被确定可以协调调节细胞表面
附着,生物膜形成的关键初始步骤。我们已经证明,Alphaproteobacterial 信号体
由 a) 作为分子中心蛋白的 HWE 激酶 SkaH、b) HWE 激酶 LovK 和 c) 组成
经典的 HK,SpdS。单独而言,LovK 和 SpdS 在调节一般应激反应中发挥着关键作用
和固定相适应。有趣的是,来自 LovK 和 SpdS 的感官信息可以集成
通过信号体通过下游转录因子 RtrA 和
RtrB 和假设的蛋白质 RtrC。初步数据证明信号体是由
额外的 HWE 和经典 HK 激酶,表明感觉复合体可以整合更广泛的范围
信号数量比之前怀疑的要多。这里提出的研究采用多学科方法
表征 HWE 信号体的结构和功能。第一个目标将使用生化方法
和质谱法来识别 SkaH 的分子伴侣并剖析 SkaH 内的直接相互作用
信号体。第二个目标将通过使用生化来补充信号体的结构分析
分析通过信号体成分的信号流的方法。初步证据表明
假设的蛋白质 RtrC 是一种神秘的转录因子,充当 HWE 的关键输出
信号体。在第三个目标中,我将通过 X 射线晶体学来表征 RtrC 的结构和功能,并
荧光记者。此外,我将使用基于 FRET 的生物传感器和运动测定来检查
RtrC 和 c-di-GMP 信号之间的调节链接。 HWE 信号体作为主要模型系统
用于研究多激酶感觉系统如何按顺序检测和处理复杂的环境信息
来调节生理反应。此外,由于 HWE 激酶存在于许多细菌病原体中,
从这项工作中获得的见解将有助于开发针对 TCS 的抗菌疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mclaughlin Maeve其他文献
Mclaughlin Maeve的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mclaughlin Maeve', 18)}}的其他基金
Characterizing the structure and function of a bacterial multi-kinase sensory complex
表征细菌多激酶感觉复合物的结构和功能
- 批准号:
10314187 - 财政年份:2021
- 资助金额:
$ 6.76万 - 项目类别:
相似国自然基金
干旱内陆河高含沙河床对季节性河流入渗的影响机制
- 批准号:52379031
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
沿纬度梯度冠层结构多样性变化对森林生产力的影响
- 批准号:32371610
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
开放与二元结构下的中国工业化:对增长与分配的影响机制研究
- 批准号:72373005
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
基于MF和HPLC-ICP-MS监测蛋白冠形成与转化研究稀土掺杂上转换纳米颗粒对凝血平衡的影响机制
- 批准号:82360655
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
高寒草灌植被冠层与根系结构对三维土壤水分动态的影响研究
- 批准号:42301019
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Translational Multimodal Strategy for Peri-Implant Disease Prevention
种植体周围疾病预防的转化多模式策略
- 批准号:
10736860 - 财政年份:2023
- 资助金额:
$ 6.76万 - 项目类别:
Nitric oxide Releasing Ultra-Slippery Antibacterial Surfaces for Urological Catheter Applications
用于泌尿导管应用的一氧化氮释放超光滑抗菌表面
- 批准号:
10759903 - 财政年份:2023
- 资助金额:
$ 6.76万 - 项目类别:
Strategies to Block Skin Wound Infection by Intercepting Bacterial Cell-to-Cell Signaling
通过拦截细菌细胞间信号传导来阻止皮肤伤口感染的策略
- 批准号:
10667239 - 财政年份:2023
- 资助金额:
$ 6.76万 - 项目类别:
Nitric oxide-releasing glycosaminoglycans for treating complex wounds
释放一氧化氮的糖胺聚糖用于治疗复杂伤口
- 批准号:
10584269 - 财政年份:2023
- 资助金额:
$ 6.76万 - 项目类别:
Understanding A Molecular Cascade That Drives Neutrophil Mediated Pathology In Arthritis
了解驱动中性粒细胞介导的关节炎病理学的分子级联
- 批准号:
10658202 - 财政年份:2023
- 资助金额:
$ 6.76万 - 项目类别: