Single-cell direct RNA sequencing using electrical zero-mode waveguides and engineered reverse transcriptases
使用电零模式波导和工程逆转录酶进行单细胞直接 RNA 测序
基本信息
- 批准号:10487746
- 负责人:
- 金额:$ 12.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-11-23 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:BackCell SeparationCellsChemicalsChemistryComplementary DNADNADNA sequencingDataDevelopmentDevicesElectrodesEnzymesEpigenetic ProcessEquipmentFutureGenerationsGenetic TranscriptionGenomeGenomicsGoalsGoldHumanKineticsLabelLengthLongevityMetalsMethodsModificationNucleic AcidsNucleotidesOpticsPseudouridineRNARNA SequencesRNA-Directed DNA PolymeraseReaderReverse engineeringSystemTechnologyTimebasecostdark matterelectric fieldgenome sequencingnanoporepreservationreference genomesingle cell analysissingle moleculesuccesstooltranscriptometranscriptome sequencingtranscriptomicsvoltagewaveguide
项目摘要
Project Summary / Abstract
Progress in genome technologies over the past few decades has delivered a dramatic cost reduction in DNA
sequencing and vast increases in read lengths, the latter afforded by development of new single-molecule
sequencing technologies. These advances enabled probing regions of the genome that were considered as
“dark matter” up until recently, as well as the assembly of new high-quality reference genomes. In addition to
genome sequencing, these single-molecule methods have opened up new applications for probing chemical
modifications in DNA, by either probing the kinetics of sequencing-by-synthesis using optical waveguides, or
by electrically distinguishing modified bases using nanopores. Currently, efforts are made to create robust
methods for direct RNA sequencing, so that information about RNA sequence, epigenetic modifications, and
quantity, can be obtained. In a single human cell, only a few picograms of RNA and DNA are available, and
since epigenetic modifications in these nucleic acids cannot be multiplied, a recognized goal of future
sequencing technologies is to reduce the amount of genomic material that can be analyzed at picogram levels.
We have recently developed a method for loading picogram-level DNA and RNA into zero-mode waveguides
(ZMWs), and have demonstrated DNA sequencing of a long DNA fragment, achieved by fabricating porous
ZMWs (PZMWs) in which a porous material was embedded at the ZMW bottoms. However, challenges with
the chemistry and longevity of porous materials have limited the throughput of this system. In this proposal, we
will develop an entirely new method for direct RNA sequencing that enables quantitative transcriptome analysis
and RNA base modification information, requiring only picogram-level input RNA. First, we have developed a
new type of ZMW that contains a metal-disk electrode embedded underneath it. Applying voltage across the
ZMWs produces an electric field that assists with DNA and RNA capture. These new devices allow vastly
increased throughput over the previous generation PZMWs, as well as substantial quality improvements to the
data obtained. Second, for the sequencing engine we will employ MarathonRT, an ultra-processive reverse
transcriptase that converts RNA molecules to complementary DNA (cDNA) molecules by enzymatic replication
robustly and accurately, more so than currently used enzymes used for RNA sequencing. Third, we will employ
advanced single-cell RNA extraction and gold-standard RNA quantification methods. Backed by extensive
preliminary data, we will integrate MarathonRT as the engine, PtZMWs as the sensitive sequence readers and
advanced single-cell sorting and RNA extraction tools, to develop for the first time quantitative RNA expression
profiles from truly single-cell material (i.e., no amplification). Additionally, using our ability to follow the
replication kinetics by MarathonRT, we will probe chemical modifications preserved in these RNA molecules,
such as methyladenine and pseudouridine. Success in this unique approach will revolutionize transcriptome
analysis from single-cell material by providing a workflow for epi/transcriptomics at unprecedented sensitivity.
项目摘要 /摘要
在过去的几十年中,基因组技术的进展已在DNA中进行了巨大的成本修订
测序和读取铅长度的大幅增加,后者通过开发新的单分子提供
测序技术。
直到最近,“暗物质”是新的高质量参考基因组的组装。
基因组测序,这些单分子方法已经开辟了新的应用程序探测化学的应用
通过使用光学波导探测测序的动力学,在DNA中进行修饰,或者
通过使用纳米孔来区分修改的基础,以创建强大
直接RNA测序的方法,因此有关RNA序列,表观遗传修饰的信息以及
可以在单个人类细胞中获得数量,只有少数RNA和DNA的表皮
由于无法乘以脑酸中的表观遗传修饰,这是未来的公认目标
测序技术是减少可以在PICAGRAM级别分析的基因组材料的量。
我们最近开发了一种将二十片片段级DNA和RNA加载到零模式波导中的方法
(ZMWS),并展示了DNA测序
ZMWS(PZMW),其中嵌入了ZMW底部的多孔材料。
多孔材料的化学和寿命限制了该提案中的通行系统
将开发一种直接RNA测序的输入的新方法,以实现定量转录组分析
和RNA基碱的修改信息,仅需要皮克图级输入RNA。
新型的ZMW包含嵌入在其下方的金属盘电极。
ZMW会产生一个有助于DNA和RNA捕获的电场。
Providence Generation Pzmws的虽然提高,以及对您的实质性改进
数据获得的数据,对于测序引擎,我们将使用Marathonrt
通过酶复制将RNA分子转换为编译DNA(cDNA)分子的转录酶
稳健,准确,因此比目前使用的酶用于RNA测序。
高级单细胞RNA提取和金标准RNA定量方法
预启示数据,我们将将Marathonrt作为引擎,PTZMWS作为有风度的序列读取器和
高级单细胞分选和RNA提取工具,首次开发定量RNA表达
训练单细胞材料的剖面(即没有放大)。
Marathonrt的复制动力学,我们将探测这些RNA分子保存的化学修饰,
例如甲基二烯和伪苷。
通过在未经表述的灵敏度下为Epi/转录组学提供工作流程,分析单细胞材料。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Meni Wanunu其他文献
Meni Wanunu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Meni Wanunu', 18)}}的其他基金
Ion Fountain Nanopore Readers for High-Resolution DNA and RNA Sequencing
用于高分辨率 DNA 和 RNA 测序的 Ion Fountain 纳米孔读数器
- 批准号:
10204556 - 财政年份:2021
- 资助金额:
$ 12.38万 - 项目类别:
Ion Fountain Nanopore Readers for High-Resolution DNA and RNA Sequencing
用于高分辨率 DNA 和 RNA 测序的 Ion Fountain 纳米孔读数器
- 批准号:
10448254 - 财政年份:2021
- 资助金额:
$ 12.38万 - 项目类别:
Single-cell direct RNA sequencing using electrical zero-mode waveguides and engineered reverse transcriptases
使用电零模式波导和工程逆转录酶进行单细胞直接 RNA 测序
- 批准号:
10348785 - 财政年份:2020
- 资助金额:
$ 12.38万 - 项目类别:
Single-cell direct RNA sequencing using electrical zero-mode waveguides and engineered reverse transcriptases
使用电零模式波导和工程逆转录酶进行单细胞直接 RNA 测序
- 批准号:
10161799 - 财政年份:2020
- 资助金额:
$ 12.38万 - 项目类别:
Single-cell direct RNA sequencing using electrical zero-mode waveguides and engineered reverse transcriptases
使用电零模式波导和工程逆转录酶进行单细胞直接 RNA 测序
- 批准号:
10565946 - 财政年份:2020
- 资助金额:
$ 12.38万 - 项目类别:
Direct picogram DNA and RNA sequencing using nanopore Zero-mode waveguides
使用纳米孔零模波导直接进行皮克 DNA 和 RNA 测序
- 批准号:
9914480 - 财政年份:2019
- 资助金额:
$ 12.38万 - 项目类别:
Direct picogram DNA and RNA sequencing using nanopore Zero-mode waveguides
使用纳米孔零模波导直接进行皮克 DNA 和 RNA 测序
- 批准号:
9356545 - 财政年份:2016
- 资助金额:
$ 12.38万 - 项目类别:
相似国自然基金
细胞核内N-WASP调控RNA Pol II相分离影响转录过程的机制研究
- 批准号:32300571
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高尔基体分离协同溶酶体修复细胞膜损伤介导结直肠癌转移及其分子机制
- 批准号:82372995
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
PHF6突变通过相分离调控YTHDC2-m6A-SREBP2信号轴促进急性T淋巴细胞白血病发生发展的机制研究
- 批准号:82370165
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
小胶质细胞特异罕见易感突变介导相分离影响阿尔茨海默病发病风险的机制
- 批准号:82371438
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
脂多糖修饰酶EptA对细胞膜脂质相分离的响应机制研究
- 批准号:32301041
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Developing an ultra-high throughput droplet microfluidic workflow for genetic circuit characterization
开发用于遗传电路表征的超高通量液滴微流体工作流程
- 批准号:
10680017 - 财政年份:2023
- 资助金额:
$ 12.38万 - 项目类别:
Mapping p53 dynamics to cell-fate outcomes in reprogramming and oncogenesis
将 p53 动态映射到重编程和肿瘤发生中的细胞命运结果
- 批准号:
10744532 - 财政年份:2023
- 资助金额:
$ 12.38万 - 项目类别:
Genetic and pharmacologic inhibition of ALDH1A3 as a treatment of beta cell failure
ALDH1A3 的遗传和药理学抑制可治疗 β 细胞衰竭
- 批准号:
10572377 - 财政年份:2023
- 资助金额:
$ 12.38万 - 项目类别:
Rapid and high-contrast photothermal microscopy with a novel tunable ZGP source
具有新型可调谐 ZGP 光源的快速高对比度光热显微镜
- 批准号:
10600781 - 财政年份:2023
- 资助金额:
$ 12.38万 - 项目类别: