RNA-programmable cell-type targeting, editing, and therapy
RNA 可编程细胞类型靶向、编辑和治疗
基本信息
- 批准号:10483215
- 负责人:
- 金额:$ 112.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-07 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AblationAnatomyAnimalsBase PairingBiological ProcessBiologyBiomedical ResearchBiotechnologyBirdsBrainCell Culture SystemCell physiologyCellsCerebral cortexClinicalClustered Regularly Interspaced Short Palindromic RepeatsComplexDNADevicesDiseaseEngineeringEnhancersEnzymesEthical IssuesGenesGenetic TranscriptionGenomeHealthHumanIndustrializationLibrariesLinkMacacaMedicineMethodsMolecular GeneticsMonitorMusNeuronsOrganOrganismPhysiologicalPopulationPrimatesRNARNA EditingRibonucleoproteinsRoleSomatic CellSpecimenSystemTechnologyTissue EngineeringTissuesValidationVisualizationadenosine deaminasebasecell typecombinatorialcostdesigngenetic manipulationgenetic technologynew technologynext generationnovel strategiesprogramssensortranscriptome
项目摘要
Josh Huang Sept 6, 2020
RNA-programmable cell-type targeting, editing, and therapy
Abstract
Systematic identification and manipulation of cell types is necessary for dissecting mechanisms of biological
functions in health and disease. Although large-scale, single-cell transcriptome profiling now enables
identification of all major transcription-defined cell types in many organisms, easy and systematic experimental
access to all major cell populations is needed to physiologically and anatomically validate these statistical
“transcriptional clusters” as cell types and, more importantly, to interrogate their roles in tissue organization and
function. The difficulty of selectively manipulating cell types remains a critical barrier to such studies. Current
approaches to this problem mostly rely on germline DNA engineering, which is slow and expensive and poses
ethical issues, especially in humans and other primates. Cell-type transcriptional enhancers afford a non-
germline approach, but their identification and validation remain effort-intensive and costly. To overcome these
barriers, all of biomedical research urgently needs a novel approach to manipulate cell types in a way that is
specific, easy yet comprehensive, affordable, and generalizes across organs and species, akin to CRISPR-
based manipulation of genes. Here I propose to develop a paradigm-shifting technology that will enable RNA-
programmable cell-type targeting and manipulation based on the fundamental biology of RNA editing. To achieve
this breakthrough, I will harness a set of next-generation, multi-functional ribonucleoprotein devices, which can
detect the presence of specific RNAs in somatic cells and trigger the expression of effector genes for cell
visualization, monitoring, and manipulation. This method builds upon the universal RNA sensing and editing
system within all metazoan cells, centered around the editing enzyme adenosine deaminase acting on RNA
(ADAR). I term this method CellREADR (Cell access through RNA sensing by Endogenous ADAR). As
CellREADR leverages endogenous cellular machinery and is built with a single modular RNA molecule that
functions through Watson-Crick base pairing, it is highly specific, inherently programmable, fast, affordable, easy
to use, and widely applicable. I propose to build and optimize CellREADR devices in cell-culture systems and
validate the method in a highly complex organ - the brain - by targeting and manipulating a large set of neuronal
cell types in the mouse cerebral cortex. We will extend CellREADR across species by targeting cell types in ex
vivo human brain specimens, and in the macaque and avian brain. Further, we will design intersectional
strategies for targeting increasingly specific cell types, and combinatorial strategies for simultaneous and
differential manipulation of multiple cell types in a tissue. By linking cell-type RNA sensors to a variety of effector
genes that alter cell functions, ranging from ablation to subtle physiological modulation, we aim to edit cell
composition and function for next-generation tissue engineering. This technology will result in large arrays of
CellREADR libraries for targeting all major cell types across diverse species, akin to CRISPR-based gene editing
of diverse genomes. Thus, CellREADR will have a broad impact in basic biology, medicine, and biotechnology.
乔什·黄2020年9月6日
RNA可编程的细胞类型靶向,编辑和治疗
抽象的
对于生物学的不同意,需要系统的识别和操纵细胞类型是必要的
尽管大规模,单细胞的转录组分析可以实现健康和疾病
识别许多生物体中所有主要转录定义的细胞类型,易于实验
需要访问所有主要的单元组人口
“转录簇”作为细胞类型,更重要的是,询问其在组织组织中的作用
功能。
解决问题的方法主要依赖于种系DNA工程,这是缓慢而昂贵的,姿势
道德问题,尤其是人类和其他灵长类动物。
种系方法,但是识别和验证仍然是付出的努力和昂贵的
障碍,所有的生物医学研究都需要一种新颖的方法来操纵细胞类型的方式
特定,容易但全面,负担得起,并且遍布器官和物种,类似于crispr-
基因的操纵。我建议开发一种范式转移技术
基于RNA编辑的基本生物学的可编程细胞类型靶向。
这个突破,我将利用一组下一代多功能核糖核蛋白设备,可以
检测体细胞中特定RNA的存在并触发细胞有效基因的表达
可视化,监视和操纵。
在RNA上的所有后生细胞中的系统中,以编辑酶腺苷脱氨酶为中心
(ADAR)
CellReadr利用内源性细胞机制,并用单个模块化RNA分子构建
通过Watson-Crick Base配对的功能,它具有高度特定的,固有的可编程,快速,可容纳,容易
使用,并广泛适用。
通过靶向和操纵大型神经元来验证高度复杂的器官中的方法 - 大脑 - 大脑
小鼠大脑皮层中的细胞类型,我们将通过靶向EX的细胞类型来扩展细胞读
体内人脑标本,在猕猴和鸟类的大脑中。
针对越来越具体的细胞类型的策略,以及同时和
通过将细胞类型的RNA传感器与多种效应器联系起来的多种细胞类型的差异操纵
从ABR到亚曲生理学调制的基因,细胞功能明显的函数,我们的目标是编辑细胞
下一代组织工程的组成和功能。
CellReadR库,用于针对各种物种的所有主要细胞类型,类似于CRISPR-BASS的基因编辑
因此,各种基因组。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Z JOSH HUANG其他文献
Z JOSH HUANG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Z JOSH HUANG', 18)}}的其他基金
RNA-programmable cell-type targeting, editing, and therapy
RNA 可编程细胞类型靶向、编辑和治疗
- 批准号:
10655620 - 财政年份:2021
- 资助金额:
$ 112.7万 - 项目类别:
RNA-programmable cell type targeting and manipulation across vertebrate nervous systems
跨脊椎动物神经系统的 RNA 可编程细胞类型靶向和操作
- 批准号:
10350096 - 财政年份:2021
- 资助金额:
$ 112.7万 - 项目类别:
Discovering the molecular genetic principles of cell type organization through neurobiology-guided computational analysis of single cell multi-omics data sets
通过神经生物学引导的单细胞多组学数据集计算分析发现细胞类型组织的分子遗传学原理
- 批准号:
10189902 - 财政年份:2021
- 资助金额:
$ 112.7万 - 项目类别:
RNA-programmable cell-type targeting, editing, and therapy
RNA 可编程细胞类型靶向、编辑和治疗
- 批准号:
10260304 - 财政年份:2021
- 资助金额:
$ 112.7万 - 项目类别:
Transcriptome-based systematic discovery of GABAergic neurons in the neocortex
基于转录组的新皮质 GABA 能神经元的系统发现
- 批准号:
9977809 - 财政年份:2016
- 资助金额:
$ 112.7万 - 项目类别:
Transcriptome-based systematic discovery of GABAergic neurons in the neocortex
基于转录组的新皮质 GABA 能神经元的系统发现
- 批准号:
9320717 - 财政年份:2016
- 资助金额:
$ 112.7万 - 项目类别:
Transcriptome-based systematic discovery of GABAergic neurons in the neocortex
基于转录组的新皮质 GABA 能神经元的系统发现
- 批准号:
9754666 - 财政年份:2016
- 资助金额:
$ 112.7万 - 项目类别:
Neurolucida BrainMaker Imaging System
Neurolucida BrainMaker 成像系统
- 批准号:
9075950 - 财政年份:2016
- 资助金额:
$ 112.7万 - 项目类别:
Transcriptome-based systematic discovery of GABAergic neurons in the neocortex
基于转录组的新皮质 GABA 能神经元的系统发现
- 批准号:
9083947 - 财政年份:2016
- 资助金额:
$ 112.7万 - 项目类别:
Transcriptome-based systematic discovery of GABAergic neurons in the neocortex
基于转录组的新皮质 GABA 能神经元的系统发现
- 批准号:
10319407 - 财政年份:2016
- 资助金额:
$ 112.7万 - 项目类别:
相似国自然基金
儿童脊柱区腧穴针刺安全性的发育解剖学及三维数字化研究
- 批准号:82360892
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
寰枢椎脱位后路钉棒内固定系统复位能力优化的相关解剖学及生物力学研究
- 批准号:82272582
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于次生乳管网络结构发育比较解剖学和转录组学的橡胶树产胶机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于垂体腺瘤海绵窦侵袭模式的相关膜性解剖学及影像学研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
The Role of VEGF in the Development of Low Back Pain Following IVD Injury
VEGF 在 IVD 损伤后腰痛发展中的作用
- 批准号:
10668079 - 财政年份:2023
- 资助金额:
$ 112.7万 - 项目类别:
In vivo feasibility of a smart needle ablation treatment for liver cancer
智能针消融治疗肝癌的体内可行性
- 批准号:
10699190 - 财政年份:2023
- 资助金额:
$ 112.7万 - 项目类别:
Delineating molecular mechanism of developmental defects of TAR syndrome
描绘 TAR 综合征发育缺陷的分子机制
- 批准号:
10818067 - 财政年份:2023
- 资助金额:
$ 112.7万 - 项目类别:
Understanding the Role of a Novel Cell Type in Triggering Voluntary Saccades
了解新型细胞类型在触发自愿眼跳中的作用
- 批准号:
10832719 - 财政年份:2023
- 资助金额:
$ 112.7万 - 项目类别:
Developmental Contributions to the Functional Maturation of the Vestibulo-Ocular Reflex
前庭眼反射功能成熟的发育贡献
- 批准号:
10679875 - 财政年份:2023
- 资助金额:
$ 112.7万 - 项目类别: