High Spatiotemporal Resolution Neural Recording System Using Active Sensing
使用主动传感的高时空分辨率神经记录系统
基本信息
- 批准号:10481444
- 负责人:
- 金额:$ 89.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-01 至 2024-02-28
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAnimalsArchitectureBase of the BrainBrainCalciumCellular StructuresCollaborationsComplexComputer softwareDataData CollectionDendritesDetectionDevicesElectronicsElectrophysiology (science)EngineeringFeedbackFiberFluorescenceFutureGenerationsHeadHumanImageImaging DeviceImaging technologyIn VitroInstitutesInvestigationKineticsLabelLaboratory ResearchLightMarketingMeasuresMembrane PotentialsMental disordersMicroscopeNeuronsNeurosciencesNeurosciences ResearchNoiseOpticsPerformancePhasePopulationPreparationPublishingResearchResolutionScientistSignal TransductionSliceSpeedStructureSynapsesSystemTechnologyTest ResultTestingUniversitiesUpdateWisconsinbasebrain researchcognitive functioncollegecommercializationcostdesigndetectorexperimental studyfluorescence imagingimagerimaging approachimprovedin vivoinnovationinstrumentinterestmicroscopic imagingmillisecondmultidisciplinarynervous system disorderneural networkneuronal cell bodyneurotransmissionnovelnovel imaging techniqueoperationoptical imagingperformance testsphysical scienceprogramsprototypequasarrelating to nervous systemresearch and developmentsensorspatiotemporalsubmicronsuccesstemporal measurementtoolvoltagevoltage sensitive dye
项目摘要
Project Summary/Abstract
The investigation of the complex neural dynamics and the cognitive functions of the brain requires non-
invasive recording tools with high spatial and temporal resolution. Fluorescence imaging/microscopy is one
of the state-of-the-art technologies for high spatial resolution recording of the activity of neuron populations.
However, existing fluorescence neural imaging technologies generally have limited speed, providing less
than a few hundred frames per second (or several milliseconds temporal resolution). This is not only limited
by the technology barriers (e.g. the low speed of cameras and/or beam scanners), but also constrained by
the low signal level emitted by the delicate micro-scale neuronal structures. The milliseconds or slower
temporal resolution substantially precludes measuring the precise timing of the generation and propagation
of neuron spikes, which is the key component of neural signaling. During this R&D program, Physical
Sciences Inc. (PSI), Dartmouth College, and the Broad Institute of MIT and Harvard propose to
develop and demonstrate a novel fluorescence neural imaging technology that enables high-speed
recording of membrane potentials from multiple neurons. This technology combines two complementary
imaging channels to achieve parallel neuronal recording with both sub-micron spatial and sub-millisecond
temporal resolution. The high-speed recording function is achieved using a novel imaging technique based
on a high-sensitivity single-point detector and a high-speed spatial light modulator (SLM). During the Phase I,
we demonstrated the feasibility of the technology by imaging cultured neurons labeled with calcium and
voltage indicating fluorescent sensors. During the proposed Phase II, we will upgrade the technology and
further demonstrate its value in neuroscience investigations. The Phase II prototypes will include a universal
high spatiotemporal resolution sensor that is compatible with various imaging setups including head-mounted
fluorescence mini-microscopes. Two Phase II prototypes will be delivered to collaborating institutes for
performance testing. The testing experiments will focus on demonstrating high spatiotemporal resolution
recording of fast action potentials from both neuron somas in the brain in vivo and sub-cellular structures
(e.g., dendrites and synapses) of neuron cultures or brain slices using genetically encoded voltage sensors.
This R&D project will result in a robust technology for non-invasive recording of neuronal kinetics with high
spatiotemporal resolution, offering a greatly needed tool in the neuroscience field.
项目概要/摘要
对复杂的神经动力学和大脑认知功能的研究需要非
具有高空间和时间分辨率的侵入性记录工具。荧光成像/显微镜是其中之一
用于高空间分辨率记录神经元群活动的最先进技术。
然而,现有的荧光神经成像技术普遍速度有限,提供的信息较少
每秒几百帧(或几毫秒时间分辨率)。这不仅是有限的
受到技术障碍(例如相机和/或光束扫描仪的低速)的限制,但也受到
精致的微型神经元结构发出的低信号水平。毫秒或更慢
时间分辨率基本上妨碍了测量生成和传播的精确时间
神经元尖峰,它是神经信号传导的关键组成部分。在此研发计划期间,物理
Sciences Inc. (PSI)、达特茅斯学院以及麻省理工学院和哈佛大学布罗德研究所提议
开发并展示一种新型荧光神经成像技术,可实现高速
记录多个神经元的膜电位。该技术结合了两种互补的技术
成像通道实现亚微米空间和亚毫秒并行神经元记录
时间分辨率。高速记录功能是使用基于新型成像技术实现的
在高灵敏度单点探测器和高速空间光调制器(SLM)上。在第一阶段期间,
我们通过对钙标记的培养神经元进行成像来证明该技术的可行性
电压指示荧光传感器。在拟议的第二阶段,我们将升级技术并
进一步证明其在神经科学研究中的价值。第二阶段原型将包括一个通用的
高时空分辨率传感器,兼容各种成像设置,包括头戴式
荧光微型显微镜。两个第二阶段原型将交付给合作机构
性能测试。测试实验将重点展示高时空分辨率
记录体内大脑神经元体和亚细胞结构的快速动作电位
使用基因编码电压传感器的神经元培养物或脑切片(例如树突和突触)。
该研发项目将带来一种强大的技术,用于非侵入性记录神经元动力学,具有高
时空分辨率,为神经科学领域提供了急需的工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Youbo Zhao其他文献
Youbo Zhao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Youbo Zhao', 18)}}的其他基金
Ultra-sensitive Singlet Oxygen Dosimeter for Skin Cancer Treatment and Prevention
用于皮肤癌治疗和预防的超灵敏单线态氧剂量计
- 批准号:
10425539 - 财政年份:2021
- 资助金额:
$ 89.03万 - 项目类别:
Ultra-sensitive Singlet Oxygen Dosimeter for Skin Cancer Treatment and Prevention
用于皮肤癌治疗和预防的超灵敏单线态氧剂量计
- 批准号:
10438940 - 财政年份:2021
- 资助金额:
$ 89.03万 - 项目类别:
Ultra-sensitive Singlet Oxygen Dosimeter for Skin Cancer Treatment and Prevention
用于皮肤癌治疗和预防的超灵敏单线态氧剂量计
- 批准号:
10010539 - 财政年份:2020
- 资助金额:
$ 89.03万 - 项目类别:
Optical Redox Probe for Continuous Metabolic Monitoring during Natural Products Bioprocessing
用于天然产品生物加工过程中连续代谢监测的光学氧化还原探针
- 批准号:
10480179 - 财政年份:2019
- 资助金额:
$ 89.03万 - 项目类别:
Advanced Intraoperative Imager for Nerve Identification
用于神经识别的先进术中成像仪
- 批准号:
10594515 - 财政年份:2019
- 资助金额:
$ 89.03万 - 项目类别:
Optical Redox Probe for Continuous Metabolic Monitoring during Natural Products Bioprocessing
用于天然产品生物加工过程中连续代谢监测的光学氧化还原探针
- 批准号:
10687154 - 财政年份:2019
- 资助金额:
$ 89.03万 - 项目类别:
Optical Redox Probe for Continuous Metabolic Monitoring during Natural Products Bioprocessing
用于天然产品生物加工过程中连续代谢监测的光学氧化还原探针
- 批准号:
9907720 - 财政年份:2019
- 资助金额:
$ 89.03万 - 项目类别:
Advanced Intraoperative Imager for Nerve Identification
用于神经识别的先进术中成像仪
- 批准号:
10481320 - 财政年份:2019
- 资助金额:
$ 89.03万 - 项目类别:
Supplemental support for the development of high spatiotemporal resolution neuronal imager
对高时空分辨率神经元成像仪开发的补充支持
- 批准号:
10879866 - 财政年份:2018
- 资助金额:
$ 89.03万 - 项目类别:
High Spatiotemporal Resolution Neural Recording System Using Active Sensing
使用主动传感的高时空分辨率神经记录系统
- 批准号:
10591614 - 财政年份:2018
- 资助金额:
$ 89.03万 - 项目类别:
相似国自然基金
乳酸介导的组蛋白乳酸化调控哺乳动物主要合子基因组激活的机制研究
- 批准号:82301880
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
早期环境暴露对儿童哮喘免疫保护的动物实验和机制研究
- 批准号:82300031
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于供应链视角的动物源性食品中抗微生物药物耐药性传导机制及监管策略研究
- 批准号:72303209
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热带森林土壤氮添加下微节肢动物对氮转化过程的调控
- 批准号:32360323
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
Slc39a13在哺乳动物铁代谢中的作用
- 批准号:32371226
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Mesoscopic microscopy for ultra-high speed and large-scale volumetric brain imaging
用于超高速和大规模脑体积成像的介观显微镜
- 批准号:
10634911 - 财政年份:2023
- 资助金额:
$ 89.03万 - 项目类别:
Dissecting circuit and cellular mechanisms for limb motor control
剖析肢体运动控制的电路和细胞机制
- 批准号:
10522108 - 财政年份:2022
- 资助金额:
$ 89.03万 - 项目类别:
Synaptic and cellular mechanisms of neuronal synchronization
神经元同步的突触和细胞机制
- 批准号:
10415155 - 财政年份:2021
- 资助金额:
$ 89.03万 - 项目类别:
MULTIREGIONAL ELECTRICAL ENCODING OF SOCIAL AGGRESSION
社会攻击的多区域电编码
- 批准号:
10583574 - 财政年份:2021
- 资助金额:
$ 89.03万 - 项目类别:
Development and evaluation of novel high-density intracortical microelectrode arrays for clinical applications
临床应用新型高密度皮质内微电极阵列的开发和评估
- 批准号:
10255795 - 财政年份:2021
- 资助金额:
$ 89.03万 - 项目类别: