Influence of task complexity and sensory feedback on cortical control of grasp force
任务复杂性和感觉反馈对皮质控制抓握力的影响
基本信息
- 批准号:10480085
- 负责人:
- 金额:$ 102.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-02 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAfferent PathwaysAnatomyAreaAutomobile DrivingBehaviorBehavioralCognitiveCommunicationComplexConsensusDataDependenceDevelopmentDimensionsElectrodesEsthesiaExhibitsFeedbackFingersFreedomGoalsHandHumanImplantInjuryKnowledgeLearning SkillLocationMediatingMotorMotor CortexMovementOutputParticipantPathway interactionsPeripheralPopulation DynamicsPostureQuadriplegiaRehabilitation therapyRoleSensoryShapesSignal TransductionSomatosensory CortexStable PopulationsTennisTestingTouch sensationTrainingUncertaintyVariantVolitionWorkarmarm movementbrain computer interfaceexperimental studyflexibilitygraspimprovedmicrostimulationmotor behaviormotor controlneuroregulationnovelpopulation basedrelating to nervous systemresponsesensory feedbacksensory inputskillssomatosensorytranscutaneous stimulation
项目摘要
ABSTRACT
Humans can skillfully control their grasp during actions as complex and dynamic as swinging a tennis racket,
and as simple and static as holding a briefcase. Both tasks require the use of sensory feedback to achieve
and maintain an appropriate grasp force. There is evidence that motor and somatosensory cortices
communicate task-relevant information in order to enable skillful movement. Our primary goal is to uncover the
motor cortical dynamics underlying grasp force control and determine the extent to which these dynamics are
mediated by behavioral context and corticocortical communication of somatosensory feedback.
We propose to study the cortical control of grasp by leveraging the unique experimental paradigms afforded by
a bidirectional human brain-computer interface study in which participants with tetraplegia have intracortical
electrode arrays implanted in motor and somatosensory cortex. Previous work, primarily focused on reaching
movements, has demonstrated that motor cortex exhibits population dynamics that are constrained within low-
dimensional manifold. We have identified similar dynamic responses within human motor cortex that contain
information about grasp force. However, these responses are task-dependent and can change as the
complexity of the proximal arm movement changes. Here we will extend that work to study the context-
dependence of M1 dynamics across a range of static and dynamic hand and arm movements including both
overt and covert (i.e., imagined) behaviors.
Sophisticated motor control relies on sensory information to shape neural control signals emanating from motor
cortex, yet very little is known about the flow of information from somatosensory to motor cortex for the control
of the hand. We aim to quantify the corticocortical communication pathways across a range of task contexts
through the analysis of simultaneous neural recordings in motor and somatosensory cortex. We will then use
intracortical microstimulation to probe these communication pathways while providing task-relevant sensory
feedback as well as task-irrelevant stimulation as a control. Finally, we will use a brain-computer interface to
test whether there is the potential for plasticity within the corticocortical communication circuits, or whether
communication is constrained by between-area dynamics. Successful completion of this proposal will lead to
new knowledge about the role of M1 in dynamic and static grasp behaviors. We will quantify how
somatosensory input is communicated with M1 and whether corticocortical communication pathways can be
modified through training, which has relevance to understanding skill learning and improving rehabilitation.
抽象的
人类可以在挥动网球拍等复杂而动态的动作中熟练地控制自己的抓握,
就像拿着公文包一样简单、静态。这两项任务都需要使用感官反馈来实现
并保持适当的抓握力。有证据表明运动皮层和体感皮层
传达与任务相关的信息,以实现熟练的动作。我们的首要目标是揭开
掌握力控制的运动皮层动力学并确定这些动力学的程度
由行为背景和体感反馈的皮质通讯介导。
我们建议利用独特的实验范式来研究抓握的皮层控制
一项双向人脑-计算机接口研究,其中四肢瘫痪的参与者有皮质内
电极阵列植入运动皮层和体感皮层。之前的工作主要集中在达到
运动,已经证明运动皮层表现出的群体动态被限制在低
维流形。我们已经在人类运动皮层中发现了类似的动态反应,其中包含
有关抓握力的信息。然而,这些反应是依赖于任务的,并且可以随着任务的变化而变化。
近端手臂运动变化的复杂性。在这里,我们将扩展这项工作来研究背景 -
M1 动力学在一系列静态和动态手部和手臂运动中的依赖性,包括
显性和隐性(即想象的)行为。
复杂的运动控制依赖于感觉信息来塑造从运动发出的神经控制信号
皮层,但对于从体感到运动皮层进行控制的信息流知之甚少
的手。我们的目标是量化一系列任务环境中的皮质沟通路径
通过分析运动和体感皮层的同步神经记录。然后我们将使用
皮质内微刺激来探测这些通信路径,同时提供与任务相关的感觉
反馈以及与任务无关的刺激作为对照。最后,我们将使用脑机接口来
测试皮质通讯回路内是否存在可塑性的潜力,或者是否
沟通受到区域间动态的限制。该提案的成功完成将导致
关于 M1 在动态和静态抓取行为中的作用的新知识。我们将量化如何
体感输入与 M1 进行通讯,皮质通讯通路是否可以
通过培训进行修改,这与理解技能学习和改善康复有关。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer L. Collinger其他文献
Jennifer L. Collinger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer L. Collinger', 18)}}的其他基金
Quantifying neural variability and learning during real world brain-computer interface use
量化现实世界脑机接口使用过程中的神经变异和学习
- 批准号:
10838152 - 财政年份:2023
- 资助金额:
$ 102.35万 - 项目类别:
Development of an EMG-controlled BCI for biomimetic control of hand movement in humans
开发 EMG 控制的 BCI,用于仿生控制人类手部运动
- 批准号:
10651404 - 财政年份:2023
- 资助金额:
$ 102.35万 - 项目类别:
Quantifying neural variability and learning during real world brain-computer interface use
量化现实世界脑机接口使用过程中的神经变异和学习
- 批准号:
10548865 - 财政年份:2022
- 资助金额:
$ 102.35万 - 项目类别:
The interplay between kinematic and force representations in motor and somatosensory cortices during reaching, grasping, and object transport
伸手、抓握和物体运输过程中运动和体感皮层运动学和力表征之间的相互作用
- 批准号:
10546486 - 财政年份:2022
- 资助金额:
$ 102.35万 - 项目类别:
Quantifying neural variability and learning during real world brain-computer interface use
量化现实世界脑机接口使用过程中的神经变异和学习
- 批准号:
10363903 - 财政年份:2022
- 资助金额:
$ 102.35万 - 项目类别:
Influence of Task Complexity and Sensory Feedback on Cortical Control of Grasp Force
任务复杂性和感觉反馈对皮质控制握力的影响
- 批准号:
10705074 - 财政年份:2021
- 资助金额:
$ 102.35万 - 项目类别:
Influence of task complexity and sensory feedback on cortical control of grasp force
任务复杂性和感觉反馈对皮质控制抓握力的影响
- 批准号:
10289762 - 财政年份:2021
- 资助金额:
$ 102.35万 - 项目类别:
Eighth International Brain Computer Interface Meeting
第八届国际脑机接口会议
- 批准号:
9913702 - 财政年份:2020
- 资助金额:
$ 102.35万 - 项目类别:
Context-dependent processing in sensorimotor cortex
感觉运动皮层的上下文相关处理
- 批准号:
9791028 - 财政年份:2018
- 资助金额:
$ 102.35万 - 项目类别:
Investigation of Cortical Changes Following Spinal Cord Injury
脊髓损伤后皮质变化的调查
- 批准号:
8200932 - 财政年份:2012
- 资助金额:
$ 102.35万 - 项目类别:
相似国自然基金
谷氨酸及其受体经压力反射传入通路参与血压与心脏疼痛感受的性别差异研究
- 批准号:81903599
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
脑肠轴迷走传入通路调控海马小胶质细胞表型转化及黄连解毒汤干预研究
- 批准号:81573635
- 批准年份:2015
- 资助金额:57.0 万元
- 项目类别:面上项目
迷走传入神经TRPA1与TRPM8信号通路介导肠粘膜慢性炎症状态下冷刺激引发内脏高敏感的机制研究
- 批准号:81470812
- 批准年份:2014
- 资助金额:67.0 万元
- 项目类别:面上项目
CXCL12-CXCR4信号通路在新生鼠耳蜗听觉传入回路发育中的作用机制研究
- 批准号:81371099
- 批准年份:2013
- 资助金额:70.0 万元
- 项目类别:面上项目
Ach和CGRP在前庭核传入、传出神经元直接投射通路中的调节作用
- 批准号:81200739
- 批准年份:2012
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Influence of Task Complexity and Sensory Feedback on Cortical Control of Grasp Force
任务复杂性和感觉反馈对皮质控制握力的影响
- 批准号:
10705074 - 财政年份:2021
- 资助金额:
$ 102.35万 - 项目类别:
The functional impact of pancreatic islet innervation
胰岛神经支配的功能影响
- 批准号:
10462696 - 财政年份:2021
- 资助金额:
$ 102.35万 - 项目类别:
Influence of task complexity and sensory feedback on cortical control of grasp force
任务复杂性和感觉反馈对皮质控制抓握力的影响
- 批准号:
10289762 - 财政年份:2021
- 资助金额:
$ 102.35万 - 项目类别:
The functional impact of pancreatic islet innervation
胰岛神经支配的功能影响
- 批准号:
10317476 - 财政年份:2021
- 资助金额:
$ 102.35万 - 项目类别:
Mapping the neural circuitry underlying walking
绘制行走背后的神经回路
- 批准号:
10388902 - 财政年份:2020
- 资助金额:
$ 102.35万 - 项目类别: