Predicting Pancreatic Ductal Adenocarcinoma (PDAC) Through Artificial Intelligence Analysis of Pre-Diagnostic CT Images
通过诊断前 CT 图像的人工智能分析预测胰腺导管腺癌 (PDAC)
基本信息
- 批准号:10475648
- 负责人:
- 金额:$ 100.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:Abdominal PainAccountingAmericanArtificial IntelligenceBiologicalBiological MarkersBiopsyCancer EtiologyCenters for Disease Control and Prevention (U.S.)Cessation of lifeClinicalCollectionDataData SetDevelopmentDiagnosisDiagnosticDiagnostic ImagingDiseaseEarly DiagnosisEarly treatmentEmergency department visitEnrollmentEpidemiologyEyeFutureGenderGoalsHeadImageImage AnalysisIncidenceIndividualLaboratoriesLow PrevalenceMachine LearningMalignant NeoplasmsMalignant neoplasm of pancreasManualsMedical centerModelingMorphologyOperative Surgical ProceduresPancreasPancreatic Ductal AdenocarcinomaPancreatic ductPatientsReaderResectableRiskScanningScreening procedureShapesStatistical Data InterpretationSurvival RateSymptomsTail of pancreasTechniquesTestingTextureTimeTrainingTraining TechnicsUnited StatesValidationVisitWomanX-Ray Computed Tomographyabdominal CTartificial intelligence algorithmautomated segmentationbaseclinically significantcomorbiditydeep learningexperiencefollow-uphigh riskhuman errorimaging studyimprovedlarge datasetsmenmortalitypancreas imagingpredictive modelingradiologistradiomicsrisk predictionrisk stratificationtumor
项目摘要
The objective of the proposed project is to develop a Pancreatic Ductal Adenocarcinoma (PDAC) prediction
model to identify individuals who have high risk for PDAC in the next 3 years through Artificial Intelligence (AI)
analysis of pre-diagnostic CT images and non-imaging factors. PDAC is the fourth leading cause of cancer-
related deaths in both men and women in the United States despite its low incidence rate. The 5-year survival
rate for all stages of PDAC is 10% but can be as high as 50% with early-stage diagnosis. Therefore,
identification of individuals at high risk for PDAC has high clinical significance as follow-up imaging
examinations or biopsy may assist in early detection and allow surgical intervention while the tumors are still
resectable. However, PDAC prediction is difficult due to the lack of reliable screening tools, the absence of
sensitive and specific symptoms and biomarkers, and low prevalence.
Abdominal pain is the single most common reason that Americans visit the emergency room (ER), where
an abdominal Computed Tomography (CT) scan is usually performed. Even though most scans don’t show
any signs of cancer visible to the naked eyes of radiologists, some subjects eventually develop PDAC in the
next few years. These pre-diagnostic CT images provide critical morphological information associated with
biological changes at the pre-cancer or early cancer stage, which can be extracted using AI to predict PDAC
risk. Therefore, the objective of the proposed project is to uncover unique features in pre-diagnostic images
using AI and develop PDAC prediction model based on these features. Non-imaging factors such as
demographic, epidemiologic, and anthropometric factors, clinical comorbidities, and laboratory tests will be
included in the model to improve the prediction accuracy. The primary hypotheses are a) AI allows extraction
of unique image features in pre-diagnostic CT images associated with pre-cancer or early cancer biological
changes that are invisible to naked eyes and b) the combination of pre-diagnostic image features and non-
imaging factors improves the accuracy of PDAC risk stratification and prediction over that using conventional
non-imaging factors alone. To verify these hypotheses, we will retrospectively evaluate CT pancreatic images
obtained up to 3 years prior to PDAC diagnosis that were deemed non-cancerous by radiologists. A group of
subjects who underwent similar imaging studies for non-gastrointestinal disorders and were age/gender
matched with pre-diagnostic imaging will serve as healthy controls. Accurately stratifying high risk individuals
may allow for early detection of PDAC in the future. A major challenge of the project is the scarcity of the
appropriate imaging data because of the low prevalence of PDAC and stringent enrollment criteria. Eight major
medical centers will participate in collection of 1,064 cases. The end point of this project is the development,
training, and validation of an AI-based PDAC prediction model, which will identify individuals who are at high
risk for developing PDAC within the next 3 years.
拟议项目的目标是开发胰腺导管腺癌 (PDAC) 预测
通过人工智能 (AI) 识别未来 3 年内 PDAC 高风险人群的模型
诊断前 CT 图像和非影像因素的分析是癌症的第四大原因。
尽管其 5 年生存率较低,但美国男性和女性均出现相关死亡。
所有阶段的 PDAC 的发生率均为 10%,但早期诊断时的发生率可高达 50%。
识别 PDAC 高风险个体作为后续影像学检查具有很高的临床意义
检查或活检可能有助于早期发现,并在肿瘤仍然存在时进行手术干预
然而,由于缺乏可靠的筛查工具、缺乏
敏感且特异的症状和生物标志物,且患病率低。
腹痛是美国人去急诊室 (ER) 的最常见原因,
尽管大多数扫描不会显示,但通常会进行腹部计算机断层扫描 (CT)。
放射科医生肉眼可见的任何癌症迹象,一些受试者最终会在体内发展为 PDAC
这些预诊断 CT 图像提供了与以下疾病相关的关键形态学信息。
癌前或癌症早期阶段的生物学变化,可以使用 AI 提取来预测 PDAC
因此,该项目的目标是发现预诊断图像中的独特特征。
利用人工智能并基于这些特征等非成像因素开发PDAC预测模型。
人口统计学、流行病学和人体测量因素、临床合并症和实验室测试将
包含在模型中以提高预测准确性的主要假设是 a) AI 允许提取。
与癌前或早期癌症生物学相关的预诊断 CT 图像中的独特图像特征
b) 诊断前图像特征与非肉眼不可见的变化相结合
与使用传统方法相比,成像因素提高了 PDAC 风险分层和预测的准确性
为了验证这些假设,我们将回顾性评估 CT 胰腺图像。
在 PDAC 诊断前 3 年内获得的、被放射科医生认为是非癌性的。
接受过类似非胃肠道疾病影像学检查且年龄/性别的受试者
与预诊断成像相结合将作为健康对照,准确地对高危人群进行分层。
可能会在未来实现 PDAC 的早期检测 该项目的一个主要挑战是 PDAC 的稀缺性。
由于 PDAC 患病率低且入组标准严格,因此需要适当的影像学数据。
医疗中心将参与收集 1,064 个病例 该项目的终点是开发,
训练和验证基于人工智能的 PDAC 预测模型,该模型将识别处于高水平的个体
未来3年内发生PDAC的风险。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Debiao Li其他文献
Debiao Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Debiao Li', 18)}}的其他基金
Predicting Pancreatic Ductal Adenocarcinoma (PDAC) Through Artificial Intelligence Analysis of Pre-Diagnostic CT Images
通过诊断前 CT 图像的人工智能分析预测胰腺导管腺癌 (PDAC)
- 批准号:
10693185 - 财政年份:2021
- 资助金额:
$ 100.05万 - 项目类别:
An Accurate Non-Contrast-Enhanced Cardiac MRI Method for Imaging Chronic Myocardial Infarctions: Technical Developments to Rapid Clinical Validation
用于慢性心肌梗塞成像的准确非增强心脏 MRI 方法:快速临床验证的技术发展
- 批准号:
9899302 - 财政年份:2017
- 资助金额:
$ 100.05万 - 项目类别:
4Dx Small Animal Scanner for Functional Lung Imaging
用于功能性肺部成像的 4Dx 小动物扫描仪
- 批准号:
9075865 - 财政年份:2016
- 资助金额:
$ 100.05万 - 项目类别:
Whole-Heart Myocardial Blood Flow Quantification Using MRI
使用 MRI 定量全心心肌血流量
- 批准号:
9226051 - 财政年份:2015
- 资助金额:
$ 100.05万 - 项目类别:
Quantitative Multiparametric MRI to Assess the Effect of Stem Cell Therapy on Chronic Low Back Pain
定量多参数 MRI 评估干细胞疗法对慢性腰痛的效果
- 批准号:
10689204 - 财政年份:2014
- 资助金额:
$ 100.05万 - 项目类别:
Quantitative Multiparametric MRI to Assess the Effect of Stem Cell Therapy on Chronic Low Back Pain
定量多参数 MRI 评估干细胞疗法对慢性腰痛的效果
- 批准号:
10454354 - 财政年份:2014
- 资助金额:
$ 100.05万 - 项目类别:
3D MRI Characterization of High-Risk Carotid Artery Plaques without Contrast Media
无需造影剂的高风险颈动脉斑块的 3D MRI 表征
- 批准号:
8973293 - 财政年份:2009
- 资助金额:
$ 100.05万 - 项目类别:
Flow Sensitive SSFP for Non-Contrast MRA and Vessel Wall Imaging
用于非对比 MRA 和血管壁成像的流量敏感 SSFP
- 批准号:
7644221 - 财政年份:2009
- 资助金额:
$ 100.05万 - 项目类别:
3D MRI Characterization of High-Risk Carotid Artery Plaques without Contrast Media
无需造影剂的高风险颈动脉斑块的 3D MRI 表征
- 批准号:
9300995 - 财政年份:2009
- 资助金额:
$ 100.05万 - 项目类别:
相似国自然基金
上市公司所得税会计信息公开披露的经济后果研究——基于“会计利润与所得税费用调整过程”披露的检验
- 批准号:72372025
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
兔死狐悲——会计师事务所同侪CPA死亡的审计经济后果研究
- 批准号:72302197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
环境治理目标下的公司财务、会计和审计行为研究
- 批准号:72332003
- 批准年份:2023
- 资助金额:166 万元
- 项目类别:重点项目
签字注册会计师动态配置问题研究:基于临阵换师视角
- 批准号:72362023
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
异常获利、捐赠与会计信息操纵:基于新冠疫情的准自然实验研究
- 批准号:72372061
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
相似海外基金
Frailty, Strength, and Mobility in Older Hernia Patients: A Novel Abdominal Wall Physical Therapy Program
老年疝气患者的虚弱、力量和活动能力:一种新颖的腹壁物理治疗方案
- 批准号:
10302868 - 财政年份:2021
- 资助金额:
$ 100.05万 - 项目类别:
Predicting Pancreatic Ductal Adenocarcinoma (PDAC) Through Artificial Intelligence Analysis of Pre-Diagnostic CT Images
通过诊断前 CT 图像的人工智能分析预测胰腺导管腺癌 (PDAC)
- 批准号:
10693185 - 财政年份:2021
- 资助金额:
$ 100.05万 - 项目类别:
Frailty, Strength, and Mobility in Older Hernia Patients: A Novel Abdominal Wall Physical Therapy Program
老年疝气患者的虚弱、力量和活动能力:一种新颖的腹壁物理治疗方案
- 批准号:
10466916 - 财政年份:2021
- 资助金额:
$ 100.05万 - 项目类别:
Transcriptome analysis of the adherent-invasive E. coli phenotype
粘附侵袭性大肠杆菌表型的转录组分析
- 批准号:
9092698 - 财政年份:2016
- 资助金额:
$ 100.05万 - 项目类别:
Shape Memory Polymer Vascular Occlusion Device for the Treatment of Venous Insufficiency Phase II
治疗静脉功能不全的形状记忆聚合物血管闭塞装置第二期
- 批准号:
9255915 - 财政年份:2016
- 资助金额:
$ 100.05万 - 项目类别: