Modeling and druggable-genome screening of glioblastoma invasion using regional biopsy-guided biomaterials systems
使用区域活检引导的生物材料系统对胶质母细胞瘤侵袭进行建模和药物基因组筛选
基本信息
- 批准号:10474358
- 负责人:
- 金额:$ 39.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-17 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAutomobile DrivingBiocompatible MaterialsBiological ModelsBiomedical EngineeringBiopsyBlood capillariesBrain NeoplasmsCD44 geneCRISPR interferenceCellsClustered Regularly Interspaced Short Palindromic RepeatsCollagen Type IVDataDiagnosisDimensionsEngineeringExcisionExhibitsExtracellular Matrix ProteinsFailureFibronectinsGenerationsGenomeGlioblastomaGoalsHeterogeneityHyaluronic AcidHydrogelsIn VitroIntegrinsKnock-outLamininLibrariesLigandsLocationMagnetic Resonance ImagingMalignant NeoplasmsMalignant neoplasm of brainMechanicsMediatingMediator of activation proteinMethodsModalityModelingNuclearPatientsProcessPrognosisPropertyRNA SplicingRecurrenceRoleRouteSamplingSiteStructureSystemTechnologyThinkingThinnessTissue EngineeringTumor BankTumor TissueTumor-associated macrophagesVariantWorkbasecancer invasivenesscell motilitycombatdruggable targeteffective therapyfallsgray matterhigh throughput screeningin vivoloss of functionneoplastic cellnew therapeutic targetnovelpatient derived xenograft modelscreeningsingle cell technologystressortherapy developmentthree-dimensional modelingtranslational progresstumortumor microenvironmenttwo-dimensionalwhite matter
项目摘要
PROJECT SUMMARY/ABSTRACT
Glioblastoma (GBM) is a devastating brain tumor lacking effective treatments. This is largely due to invasion of
GBM cells, which enables escape from resection and drives inevitable recurrence, typically 2 cm from the
location at diagnosis. Progress in developing therapies to combat this process has been slow due to problems
with the cells being studied and the methods of analysis. First, existing studies have failed to recognize that
infiltrating GBM cells extending beyond the tumor edge have evolved a unique adaptive cellular machinery due
to local stressors in their microenvironment. Unfortunately, these cells at the invasive tumor front are often not
the ones sampled in studies analyzing banked tumor tissue, which is typically procured from the readily
accessible central portions of the tumor. Another problem is that most studies of invasiveness have used two-
dimensional (2D) culture systems coated with a thin layer of ECM proteins, which fail to capture the
dimensionality, mechanics, and heterogeneity of GBM invasion. To address these limitations, our team has
developed intriguing data using site-directed biopsies from GBM and has tissue engineered platforms to study
invasion in vitro. Using site-directed biopsies, we have shown increased GBM cell invasiveness and increased
expression of invasion-promoting integrins and extracellular matrix (ECM) splice variants outside versus inside
enhancing MRI regions. We have also developed patient-derived xenografts (PDXs) from these site-directed
biopsies that exhibit more invasiveness when arising from the tumor edge. Our team also became among the
first to bioengineer 3D hydrogel systems as a discovery platform In GBM. We found that, as CD44-mediated
peritumoral invasion falls, perivascular integrin-based motility increases. Here, we will build upon this intriguing
data by investigating our central hypothesis that as GBM cells exit the tumor core, reciprocal interactions with
the microenvironment drive a targetable transition from peritumoral to perivascular invasion. These goals will
be accomplished through three aims: Aim 1 – Define changes in the tumor microenvironment promoting
invasive change as tumor cells egress away from the central core to the outer edge of GBM; Aim 2 - Refine
bioengineered culture models to replicate the microenvironment of the outer edge of GBM and identify the role
of TAMs in driving invasion in this region; and Aim 3 - Define the role of integrins in the invasiveness of GBM
cells from the outer tumor edge and identify druggable mediators of invasion in this region. To accomplish
these goals, we will use novel PDXs and tissue engineered platforms, along with CRISPRi, single-cell
technology, and site-directed biopsies. Our studies will discover novel mechanisms by which tumor cells and
their microenvironment are altered to drive increased invasiveness as cells migrate away from the tumor core.
This work will challenge conventional thinking by showing how GBM integrates distinct regional
microenvironments. We will account for these distinctions when identifying novel druggable targets to disrupt
GBM cell invasiveness, with potential applicability to other invasive cancers as well.
项目概要/摘要
胶质母细胞瘤(GBM)是一种破坏性脑肿瘤,缺乏有效的治疗方法,这主要是由于胶质母细胞瘤的侵袭。
GBM 细胞能够逃避切除并导致不可避免的复发,通常距离肿瘤 2 厘米
由于存在问题,开发治疗这一过程的进展缓慢。
首先,现有的研究未能认识到这一点。
延伸到肿瘤边缘之外的浸润性 GBM 细胞已经进化出一种独特的适应性细胞机制,这是由于
不幸的是,这些处于侵袭性肿瘤前沿的细胞通常不会受到微环境中的局部应激源的影响。
在分析储存的肿瘤组织的研究中取样的样本,这些组织通常是从容易获得的
另一个问题是大多数侵袭性研究都使用了两种方法。
二维(2D)培养系统涂有一层薄薄的 ECM 蛋白,无法捕获
为了解决这些局限性,我们的团队研究了 GBM 侵袭的维度、机制和异质性。
使用 GBM 定点活检开发了有趣的数据,并拥有组织工程平台可供研究
使用定点活检,我们发现 GBM 细胞侵袭性增加。
外部与内部促进侵袭的整合素和细胞外基质(ECM)剪接变体的表达
我们还从这些定点开发了患者来源的异种移植物(PDX)。
当从肿瘤边缘产生时表现出更大的侵袭性,我们的团队也成为其中之一。
首先将生物工程 3D 水凝胶系统作为 GBM 的发现平台,我们发现,作为 CD44 介导的。
肿瘤周围侵袭下降,基于血管周围整合素的运动增加在这里,我们将基于这一有趣的现象进行研究。
通过研究我们的中心假设来获取数据,即当 GBM 细胞离开肿瘤核心时,与
微环境推动从肿瘤周围侵袭到血管周围侵袭的有针对性的转变。
通过三个目标来实现: 目标 1 – 定义促进肿瘤微环境的变化
肿瘤细胞从 GBM 的中央核心逸出至外缘时发生侵袭性变化;目标 2 - Refine
生物工程培养模型复制 GBM 外缘的微环境并确定其作用
TAM 在驱动该区域的侵袭中的作用;目标 3 - 定义整合素在 GBM 侵袭中的作用
细胞从肿瘤外边缘识别并识别该区域的可药物侵袭介质。
为了实现这些目标,我们将使用新型 PDX 和组织工程平台,以及 CRISPRi、单细胞
我们的研究将发现肿瘤细胞和定点活检的新机制。
当细胞迁移远离肿瘤核心时,它们的微环境发生改变,导致侵袭性增加。
这项工作将通过展示 GBM 如何整合不同的区域来挑战传统思维
在确定新的可药物靶点以破坏微环境时,我们将考虑这些区别。
GBM 细胞侵袭性,也可能适用于其他侵袭性癌症。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Manish Aghi其他文献
Manish Aghi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Manish Aghi', 18)}}的其他基金
Retroviral RLI/4-1 BBL and RLI/FLT3L Combination Immunomodulatory Gene Therapy for Glioblastoma
逆转录病毒 RLI/4-1 BBL 和 RLI/FLT3L 联合免疫调节基因治疗胶质母细胞瘤
- 批准号:
10740288 - 财政年份:2023
- 资助金额:
$ 39.57万 - 项目类别:
Retroviral RLI immunomodulatory gene therapy for glioblastoma
逆转录病毒 RLI 免疫调节基因治疗胶质母细胞瘤
- 批准号:
10522026 - 财政年份:2022
- 资助金额:
$ 39.57万 - 项目类别:
Modeling and druggable-genome screening of glioblastoma invasion using regional biopsy-guided biomaterials systems
使用区域活检引导的生物材料系统对胶质母细胞瘤侵袭进行建模和药物基因组筛选
- 批准号:
10237253 - 财政年份:2018
- 资助金额:
$ 39.57万 - 项目类别:
Tumor cell and microenvironment changes causing antiangiogenic therapy resistance
肿瘤细胞和微环境变化导致抗血管生成治疗耐药
- 批准号:
8631906 - 财政年份:2013
- 资助金额:
$ 39.57万 - 项目类别:
Tumor cell and microenvironment changes causing antiangiogenic therapy resistance
肿瘤细胞和微环境变化导致抗血管生成治疗耐药
- 批准号:
9285850 - 财政年份:2013
- 资助金额:
$ 39.57万 - 项目类别:
Tumor cell and microenvironment changes causing antiangiogenic therapy resistance
肿瘤细胞和微环境变化导致抗血管生成治疗耐药
- 批准号:
8739317 - 财政年份:2013
- 资助金额:
$ 39.57万 - 项目类别:
Tumor cell and microenvironment changes causing antiangiogenic therapy resistance
肿瘤细胞和微环境变化导致抗血管生成治疗耐药
- 批准号:
9094722 - 财政年份:2013
- 资助金额:
$ 39.57万 - 项目类别:
Tumor cell and microenvironment changes causing antiangiogenic therapy resistance
肿瘤细胞和微环境变化导致抗血管生成治疗耐药
- 批准号:
10199057 - 财政年份:2013
- 资助金额:
$ 39.57万 - 项目类别:
Characterizing and Targeting Tumoral Factors Recruiting Perivascular Progenitors
表征和靶向招募血管周围祖细胞的肿瘤因素
- 批准号:
8287632 - 财政年份:2009
- 资助金额:
$ 39.57万 - 项目类别:
Characterizing and Targeting Tumoral Factors Recruiting Perivascular Progenitors
表征和靶向招募血管周围祖细胞的肿瘤因素
- 批准号:
8500475 - 财政年份:2009
- 资助金额:
$ 39.57万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Effect of chronic ethanol exposure on synaptic organization in the rostromedial tegmental nucleus
慢性乙醇暴露对吻内侧被盖核突触组织的影响
- 批准号:
10809364 - 财政年份:2023
- 资助金额:
$ 39.57万 - 项目类别:
Using natural killer cells to prevent breast cancer metastases
使用自然杀伤细胞预防乳腺癌转移
- 批准号:
10591362 - 财政年份:2023
- 资助金额:
$ 39.57万 - 项目类别:
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 39.57万 - 项目类别:
Project 2: Impact of H1/H2 haplotypes on cellular disease-associated phenotypes driven by FTD-causing MAPT mutations
项目 2:H1/H2 单倍型对 FTD 引起的 MAPT 突变驱动的细胞疾病相关表型的影响
- 批准号:
10834336 - 财政年份:2023
- 资助金额:
$ 39.57万 - 项目类别: