scDECO: A novel statistical framework to identify differential co-expression gene combinations systematically using single-cell RNA sequencing data
scDECO:一种新颖的统计框架,利用单细胞 RNA 测序数据系统地识别差异共表达基因组合
基本信息
- 批准号:10474599
- 负责人:
- 金额:$ 16.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsBayesian ModelingBenchmarkingBioconductorBiologicalBiologyCancer PatientCanesCellsCharacteristicsClinicalComplementComplexComputer softwareDataData SetDatabasesDevelopmentDiseaseDropoutEcosystemEnvironmentEventExhibitsGaussian modelGene CombinationsGene ExpressionGene Expression ProfilingGenesGeneticGenetic TranscriptionHeterogeneityIndividualInter-tumoral heterogeneityMalignant NeoplasmsMalignant neoplasm of prostateMethodsModelingMolecularNamesNeoplasm Circulating CellsNormal CellOutcomePatientsPerformanceProcessPropertyProstateProtocols documentationRegulationReportingResearch DesignResearch PersonnelRiskSamplingSeveritiesSeverity of illnessSystemTechniquesTechnologyTranscriptadvanced prostate canceranalytical toolanticancer researchbasecancer cellcell typechemotherapyclinically relevantdesigndifferential expressionexperimental studyflexibilityimprovedmelanomaneoplastic cellnovelopen sourceprogramsresponsesingle cell analysissingle-cell RNA sequencingstem-like cellstemnesssuccesstranscriptome sequencingtumortumor microenvironmentuser-friendly
项目摘要
Project Summary
Recent single-cell RNA sequencing (scRNAseq) studies have revealed complex tumor
ecosystems characterized by intricate interactions between heterogeneous cell types and
diverse transcriptional programs. Differential co-expression (DC) analysis is emerging as
a crucial complement to the standard differential expression analysis (DE) for gene
profiling data. DC analysis can detect correlation changes between pairs of genes across
different modulating conditions. However, most DC analysis approaches are originally
designed for use on either microarray or bulk RNAseq data. There is an urgent need to
develop advanced DC analytical techniques that are tailored to the characteristics of
single-cell data, study design and biological objectives.
In Aim 1, we will develop a novel, flexible Bayesian model-based framework
named scDECO to improve the accuracy of identifying DC gene combinations using
scRNAseq data. Using data generated from various scRNAseq experiment protocols, we
will evaluate the proposed scDECO algorithm and perform benchmarking analyses to
compare our proposed approaches to current approaches. These analyses will provide a
better understanding of the advantages and limitations of these methods.
In Aim2, we will implement the scDECO algorithm using scRNAseq datasets from
melanoma and prostate circulating tumor cells. By identifying sets of clinically relevant
DC gene pairs using single-cell data, the findings can promote understanding of the
transcriptional co-regulatory processes in cancer stem-like cells and other cells in the
tumor microenvironment. Furthermore, the proposed framework has the potential to
improve clinical disease severity prediction by incorporating gene co-expression
information into risk score calculation. The predictive performance of the proposed
algorithm will be further evaluated using both scRNAseq and bulk RNAseq data. Finally,
in Aim3, freely available R/Bioconductor software packages will be distributed. The
R/Bioconductor environments are both very commonly used by biomedical researchers.
Ultimately, this proposed framework will accelerate studies seeking to understand the
differential co-regulatory transcriptional activities in tumors.
项目概要
最近的单细胞 RNA 测序 (scRNAseq) 研究揭示了复杂的肿瘤
生态系统的特点是异质细胞类型之间错综复杂的相互作用
多样化的转录程序。差异共表达 (DC) 分析正在兴起
对基因标准差异表达分析 (DE) 的重要补充
分析数据。 DC分析可以检测基因对之间的相关性变化
不同的调制条件。然而,大多数 DC 分析方法最初都是
设计用于微阵列或批量 RNAseq 数据。迫切需要
开发适合特征的先进直流分析技术
单细胞数据、研究设计和生物学目标。
在目标 1 中,我们将开发一种新颖、灵活的基于贝叶斯模型的框架
命名为scDECO,以提高识别DC基因组合的准确性
scRNAseq 数据。使用各种 scRNAseq 实验方案生成的数据,我们
将评估所提出的 scDECO 算法并执行基准分析
将我们提出的方法与当前方法进行比较。这些分析将提供
更好地了解这些方法的优点和局限性。
在 Aim2 中,我们将使用来自的 scRNAseq 数据集实现 scDECO 算法
黑色素瘤和前列腺循环肿瘤细胞。通过识别临床相关组
使用单细胞数据研究 DC 基因对,该发现可以促进对 DC 基因对的理解
癌症干细胞和其他细胞中的转录共调控过程
肿瘤微环境。此外,拟议的框架有可能
通过整合基因共表达改善临床疾病严重程度预测
信息纳入风险评分计算。所提出的预测性能
将使用 scRNAseq 和bulk RNAseq 数据进一步评估算法。最后,
在 Aim3 中,将免费分发 R/Bioconductor 软件包。这
R/Bioconductor 环境都是生物医学研究人员非常常用的环境。
最终,这个提出的框架将加速寻求理解的研究
肿瘤中不同的共调节转录活性。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Modeling dynamic correlation in zero-inflated bivariate count data with applications to single-cell RNA sequencing data.
- DOI:10.1111/biom.13457
- 发表时间:2022-06
- 期刊:
- 影响因子:1.9
- 作者:Yang Z;Ho YY
- 通讯作者:Ho YY
Flexible copula model for integrating correlated multi-omics data from single-cell experiments.
- DOI:10.1111/biom.13701
- 发表时间:2023-06
- 期刊:
- 影响因子:1.9
- 作者:Ma, Zichen;Davis, Shannon W.;Ho, Yen-Yi
- 通讯作者:Ho, Yen-Yi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yen-Yi Ho其他文献
Yen-Yi Ho的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yen-Yi Ho', 18)}}的其他基金
scDECO: A novel statistical framework to identify differential co-expression gene combinations systematically using single-cell RNA sequencing data
scDECO:一种新颖的统计框架,利用单细胞 RNA 测序数据系统地识别差异共表达基因组合
- 批准号:
10305324 - 财政年份:2021
- 资助金额:
$ 16.91万 - 项目类别:
相似国自然基金
地表与大气层顶短波辐射多分量一体化遥感反演算法研究
- 批准号:42371342
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
高速铁路柔性列车运行图集成优化模型及对偶分解算法
- 批准号:72361020
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
随机密度泛函理论的算法设计和分析
- 批准号:12371431
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于全息交通数据的高速公路大型货车运行风险识别算法及主动干预方法研究
- 批准号:52372329
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
高效非完全信息对抗性团队博弈求解算法研究
- 批准号:62376073
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
- 批准号:
10590913 - 财政年份:2023
- 资助金额:
$ 16.91万 - 项目类别:
Use Bayesian methods to facilitate the data integration for complex clinical trials
使用贝叶斯方法促进复杂临床试验的数据集成
- 批准号:
10714225 - 财政年份:2023
- 资助金额:
$ 16.91万 - 项目类别:
Early Detection of Pancreatic Cancer with Human-in-the-Loop Deep Learning
通过人在环深度学习早期检测胰腺癌
- 批准号:
10592060 - 财政年份:2023
- 资助金额:
$ 16.91万 - 项目类别:
A mega-analysis framework for delineating autism neurosubtypes
描述自闭症神经亚型的大型分析框架
- 批准号:
10681965 - 财政年份:2023
- 资助金额:
$ 16.91万 - 项目类别:
Bayesian Modeling and Inference for High-Dimensional Disease Mapping and Boundary Detection"
用于高维疾病绘图和边界检测的贝叶斯建模和推理”
- 批准号:
10568797 - 财政年份:2023
- 资助金额:
$ 16.91万 - 项目类别: