scDECO: A novel statistical framework to identify differential co-expression gene combinations systematically using single-cell RNA sequencing data
scDECO:一种新颖的统计框架,利用单细胞 RNA 测序数据系统地识别差异共表达基因组合
基本信息
- 批准号:10474599
- 负责人:
- 金额:$ 16.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Project Summary
Recent single-cell RNA sequencing (scRNAseq) studies have revealed complex tumor
ecosystems characterized by intricate interactions between heterogeneous cell types and
diverse transcriptional programs. Differential co-expression (DC) analysis is emerging as
a crucial complement to the standard differential expression analysis (DE) for gene
profiling data. DC analysis can detect correlation changes between pairs of genes across
different modulating conditions. However, most DC analysis approaches are originally
designed for use on either microarray or bulk RNAseq data. There is an urgent need to
develop advanced DC analytical techniques that are tailored to the characteristics of
single-cell data, study design and biological objectives.
In Aim 1, we will develop a novel, flexible Bayesian model-based framework
named scDECO to improve the accuracy of identifying DC gene combinations using
scRNAseq data. Using data generated from various scRNAseq experiment protocols, we
will evaluate the proposed scDECO algorithm and perform benchmarking analyses to
compare our proposed approaches to current approaches. These analyses will provide a
better understanding of the advantages and limitations of these methods.
In Aim2, we will implement the scDECO algorithm using scRNAseq datasets from
melanoma and prostate circulating tumor cells. By identifying sets of clinically relevant
DC gene pairs using single-cell data, the findings can promote understanding of the
transcriptional co-regulatory processes in cancer stem-like cells and other cells in the
tumor microenvironment. Furthermore, the proposed framework has the potential to
improve clinical disease severity prediction by incorporating gene co-expression
information into risk score calculation. The predictive performance of the proposed
algorithm will be further evaluated using both scRNAseq and bulk RNAseq data. Finally,
in Aim3, freely available R/Bioconductor software packages will be distributed. The
R/Bioconductor environments are both very commonly used by biomedical researchers.
Ultimately, this proposed framework will accelerate studies seeking to understand the
differential co-regulatory transcriptional activities in tumors.
项目摘要
最近的单细胞RNA测序(SCRNASEQ)研究显示了复杂的肿瘤
生态系统的特征是异质细胞类型之间的复杂相互作用和
各种转录程序。差异共表达(DC)分析正在出现
基因标准差分表达分析(DE)的关键补充
分析数据。 DC分析可以检测基因对之间的相关性变化
不同的调节条件。但是,大多数DC分析方法最初是
设计用于微阵列或散装RNASEQ数据。迫切需要
开发高级直流分析技术,这些技术是根据特征量身定制的
单细胞数据,研究设计和生物学目标。
在AIM 1中,我们将开发一个基于贝叶斯模型的新颖,灵活的框架
命名为SCDECO,以提高使用DC基因组合的准确性
SCRNASEQ数据。使用从各种scrnaseq实验协议生成的数据,我们
将评估所提出的SCDECO算法并执行基准分析
将我们提出的方法与当前方法进行比较。这些分析将提供
更好地了解这些方法的优势和局限性。
在AIM2中,我们将使用SCRNASEQ数据集实现SCDECO算法
黑色素瘤和前列腺循环肿瘤细胞。通过识别一组临床相关
直流基因对使用单细胞数据,这些发现可以促进对
癌症干细胞和其他细胞中的转录共调节过程
肿瘤微环境。此外,提议的框架有可能
通过纳入基因共表达来改善临床疾病的严重程度预测
信息计算中的风险分数计算。提议的预测性能
将使用SCRNASEQ和BOLK RNASEQ数据进一步评估算法。最后,
在AIM3中,将分发免费可用的R/生物通用器软件包。这
生物医学研究人员通常使用R/Bioconductor环境。
最终,这个拟议的框架将加速试图了解的研究
肿瘤中的差异共调节转录活性。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Modeling dynamic correlation in zero-inflated bivariate count data with applications to single-cell RNA sequencing data.
- DOI:10.1111/biom.13457
- 发表时间:2022-06
- 期刊:
- 影响因子:1.9
- 作者:Yang Z;Ho YY
- 通讯作者:Ho YY
Flexible copula model for integrating correlated multi-omics data from single-cell experiments.
- DOI:10.1111/biom.13701
- 发表时间:2023-06
- 期刊:
- 影响因子:1.9
- 作者:Ma, Zichen;Davis, Shannon W.;Ho, Yen-Yi
- 通讯作者:Ho, Yen-Yi
共 2 条
- 1
Yen-Yi Ho的其他基金
scDECO: A novel statistical framework to identify differential co-expression gene combinations systematically using single-cell RNA sequencing data
scDECO:一种新颖的统计框架,利用单细胞 RNA 测序数据系统地识别差异共表达基因组合
- 批准号:1030532410305324
- 财政年份:2021
- 资助金额:$ 16.91万$ 16.91万
- 项目类别:
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
- 批准号:1059091310590913
- 财政年份:2023
- 资助金额:$ 16.91万$ 16.91万
- 项目类别:
Use Bayesian methods to facilitate the data integration for complex clinical trials
使用贝叶斯方法促进复杂临床试验的数据集成
- 批准号:1071422510714225
- 财政年份:2023
- 资助金额:$ 16.91万$ 16.91万
- 项目类别:
Early Detection of Pancreatic Cancer with Human-in-the-Loop Deep Learning
通过人在环深度学习早期检测胰腺癌
- 批准号:1059206010592060
- 财政年份:2023
- 资助金额:$ 16.91万$ 16.91万
- 项目类别:
Bayesian Modeling and Inference for High-Dimensional Disease Mapping and Boundary Detection"
用于高维疾病绘图和边界检测的贝叶斯建模和推理”
- 批准号:1056879710568797
- 财政年份:2023
- 资助金额:$ 16.91万$ 16.91万
- 项目类别:
A mega-analysis framework for delineating autism neurosubtypes
描述自闭症神经亚型的大型分析框架
- 批准号:1068196510681965
- 财政年份:2023
- 资助金额:$ 16.91万$ 16.91万
- 项目类别: