Elucidating the Molecular Mechanics of Eukaryotic Translation Initiation and Its Control
阐明真核翻译起始及其控制的分子机制
基本信息
- 批准号:10471708
- 负责人:
- 金额:$ 57.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:5&apos Untranslated Regions7-methylguanosineAnticodonBase PairingBindingBinding SitesBiochemistryBiological ModelsC-terminalCodon NucleotidesCollaborationsComplexEventGTP BindingGene Expression RegulationGoalsGuanosine TriphosphateGuanosine Triphosphate PhosphohydrolasesIn VitroInitiator CodonInitiator tRNAKineticsLengthMeasurementMessenger RNAMolecularMolecular ConformationMonitorMovementNational Institute of Child Health and Human DevelopmentOrganismPeptide Initiation FactorsPhasePositioning AttributeProcessProtein BiosynthesisProteinsRNA Cap-Binding ProteinsRNA HelicaseRNA-Binding ProteinsResearchRibosomesRoleSaccharomyces cerevisiaeScaffolding ProteinScanningSiteStructureTailTechniquesTransfer RNATranslation InitiationYeastseIF-4Beukaryotic initiation factor-5Bgenetic approachinorganic phosphatemolecular mechanicspandemic diseaserecruitstructural biologytranscriptome
项目摘要
The goal of our research group is to elucidate the molecular mechanisms underlying the initiation phase of protein synthesis in eukaryotic organisms. We use the yeast saccharomyces cerevisiae as a model system and employ a range of approaches - from genetics to biochemistry to structural biology - in collaboration with Alan Hinnebusch and Tom Devers labs at NICHD and several other research groups around the world.
Eukaryotic translation initiation is a key control point in the regulation of gene expression. It begins when an initiator methionyl tRNA (Met-tRNAi) is loaded onto the small (40S) ribosomal subunit. Met-tRNAi binds to the 40S subunit as a ternary complex (TC) with the GTP-bound form of the initiation factor eIF2. Three other factors eIF1, eIF1A and eIF3 also bind to the 40S subunit and promote the loading of the TC. The resulting 43S pre-initiation complex (PIC) is then loaded onto the 5-end of an mRNA with the aid of eIF3 and the eIF4 group of factors the RNA helicase eIF4A; the 5-7-methylguanosine cap-binding protein eIF4E; the scaffolding protein eIF4G; and the 40S subunit- and RNA-binding protein eIF4B. Both eIF4A and eIF4E bind to eIF4G and form the eIF4F complex. Once loaded onto the mRNA, the 43S PIC is thought to scan along the mRNA in search of an AUG start codon. This process is ATP-dependent and likely requires multiple RNA helicases, including the DEAD-box protein Ded1p. Recognition of the start site begins with base pairing between the anticodon of tRNAi and the AUG codon. This base pairing then triggers downstream events that commit the PIC to continuing initiation from that point on the mRNA. These events include ejection of eIF1 from its binding site on the 40S subunit, movement of the C-terminal tail (CTT) of eIF1A, and release of phosphate from eIF2, which converts it to its GDP-bound state. In addition, the initiator tRNA moves from a position that is not fully engaged in the ribosomal P site (termed P(OUT)) to one that is (P(IN)) and the PIC as a whole converts from an open conformation that is conducive for scanning to a closed one that is not. At this stage eIF2GDP dissociates from the PIC and eIF1A and a second GTPase factor, eIF5B, coordinate joining of the large ribosomal subunit to form the 80S initiation complex. eIF5B hydrolyzes GTP, which appears to result in a conformational reorganization of the complex, and then dissociates along with eIF1A.
Despite restrictions put in place due to the pandemic, we were able to make progress this year. We adapted our transcriptome-wide technique RecSeq, which allows us to monitor mRNA recruitment to the 43S PIC in vitro, to perform studies of the kinetics of mRNA recruitment. This approach has allowed us to group mRNAs according to their rates of recruitment, with most binding rapidly to the PIC but a subset binding more slowly. The rate of recruitment correlates negatively with length and the amount of structure in the 5'-untranslated regions of the mRNAs. We are using RecSeq kinetic measurements to probe the roles of factors involved in mRNA recruitment including eIF4A, eIF4B and Ded1.
我们研究小组的目的是阐明真核生物中蛋白质合成的起始阶段的分子机制。我们将酿酒酵母的酵母菌作为模型系统,并采用各种方法 - 从遗传学到生物化学再到结构生物学 - 与NICHD和全球其他几个研究小组的Alan Hinnebusch和Tom Devers Labs合作。
真核翻译引发是基因表达调节的关键控制点。当将引发剂甲基二酮tRNA(met-tRNAI)加载到小(40s)核糖体亚基上时,它就开始了。 Met-tRNAi与40S亚基作为三元络合物(TC)结合了启动因子EIF2的GTP结合形式。 EIF1,EIF1A和EIF3的其他三个因素也与40S亚基结合并促进TC的负载。然后将产生的43S启动络合物(PIC)加载到mRNA的5端,借助EIF3和EIF4组RNA Helicase EIF4A; 5-7-甲基鸟苷帽结合蛋白EIF4E;脚手架蛋白EIF4G;以及40S亚基和RNA结合蛋白EIF4B。 EIF4A和EIF4E都与EIF4G结合并形成EIF4F复合物。一旦装载到mRNA上,就可以认为43S PIC沿mRNA扫描以寻找Aug Start密码子。该过程依赖于ATP,可能需要多种RNA解旋酶,包括Dead-Box蛋白DED1P。识别起点位点始于TRNAI和AUG密码子之间的基础配对。然后,这种基础配对触发了下游事件,这些事件将图片从mRNA上开始持续开始。这些事件包括从其在40S亚基上的结合位点射出EIF1,EIF1A的C末端尾部(CTT)的运动以及从EIF2释放磷酸盐,将其转换为GDP结合状态。此外,引发剂tRNA从没有完全参与核糖体P位点(称为p(out))的位置转移到(p(in)),而整个图片从一个开放的构型转换为有助于扫描到封闭的构型。在此阶段,EIF2GDP与PIC和EIF1A分离,第二个GTPase因子EIF5B,大型核糖体亚基的坐标连接形成80年代的启动复合物。 EIF5B水解GTP,似乎导致复合物的构象重组,然后与EIF1A一起解离。
尽管由于大流行而施加了限制,但我们今年还是能够取得进步。我们调整了整个转录组技术的RECSEQ,这使我们能够在体外监视MRNA募集到43S PIC,以进行对mRNA募集动力学的研究。这种方法使我们能够根据其募集率进行分组,并且与PIC的结合迅速,但子集的结合较慢。招聘率与mRNA的5'非翻译区域的长度和结构量负相关。我们正在使用RecSeq动力学测量值来探测包括EIF4A,EIF4B和DED1在内的mRNA募集中涉及的因素的作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jon Lorsch其他文献
Jon Lorsch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jon Lorsch', 18)}}的其他基金
Elucidating the Molecular Mechanics of Eukaryotic Translation Initiation and Its Control
阐明真核翻译起始及其控制的分子机制
- 批准号:
10266534 - 财政年份:
- 资助金额:
$ 57.77万 - 项目类别:
Elucidating the Molecular Mechanics of Eukaryotic Translation Initiation and Its Control
阐明真核翻译起始及其控制的分子机制
- 批准号:
8941570 - 财政年份:
- 资助金额:
$ 57.77万 - 项目类别:
Elucidating the Molecular Mechanics of Eukaryotic Translation Initiation and Its Control
阐明真核翻译起始及其控制的分子机制
- 批准号:
10685193 - 财政年份:
- 资助金额:
$ 57.77万 - 项目类别:
Elucidating the Molecular Mechanics of Eukaryotic Translation Initiation and Its Control
阐明真核翻译起始及其控制的分子机制
- 批准号:
10908177 - 财政年份:
- 资助金额:
$ 57.77万 - 项目类别:
相似海外基金
Molecular mechanism of 4E-binding proteins on heart failure development
4E结合蛋白对心力衰竭发展的分子机制
- 批准号:
8461159 - 财政年份:2011
- 资助金额:
$ 57.77万 - 项目类别: