Fiber-reinforced hydrogels to guide the formation and integration of engineered microvasculature
纤维增强水凝胶引导工程微血管的形成和整合
基本信息
- 批准号:10469302
- 负责人:
- 金额:$ 1.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2022-02-14
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAdhesionsAnastomosis - actionBasement membraneBiocompatible MaterialsBiologicalBlood CirculationBlood VesselsCellsCommunicationComplexCuesDataDepositionDevelopmentDextransDorsalEndothelial CellsEngineeringEngraftmentExtracellular MatrixFiberGleanGoalsGraft SurvivalHydrogelsImmunohistochemistryImplantIn VitroIntelligenceIntercellular JunctionsLengthMeasuresMechanicsMediatingMicrofluidic MicrochipsModelingMorphologyMusMuscleMyeloid CellsNutrientOrganOutcomeOxygenPerfusionPopulationProcessPsychological reinforcementRegenerative MedicineReportingRoleSCID MiceSignal TransductionSiteSkinStructureSurfaceTestingThinnessTimeTissue DonorsTissue EngineeringTissue GraftsTissuesVascular blood supplyVascularizationWorkangiogenesiscell assemblydensitydesigndivinyl sulfonefluorescence imagingfunctional restorationimplantationimprovedimproved functioningin vivomouse modelnovelphysical propertyresponsescaffoldself assemblysubcutaneoussuccesstransmission processvasculogenesis
项目摘要
PROJECT SUMMARY
Tissue engineering and regenerative medicine is a rapidly growing field striving to develop biological constructs
that restore, maintain, or improve the function of a tissue or organ. While the past few decades have reported
success in relatively thin non-vascularized tissues, the development of large and complex tissues requires
adequate blood supply throughout the construct upon implantation. Specifically, rapid integration (~1 day) of
engineered vasculature is essential to graft survival by providing nutrients and oxygen to all cells within the living
construct. While many have reported successful assembly of vascular networks in vitro, vessel maturation and
rapid anastomosis to host vasculature post-implantation remain significant challenges. Thus, the long-term goal
of this work is to establish a prevascularized biomaterial that supports rapid host integration and subsequent
perfusion. Towards this goal, the overall objective of this proposal is to understand the role of ECM physical
properties, specifically fibrous microstructure, in 1) regulating the self-assembly of endothelial cells (ECs) into a
mature vascular network and 2) promoting host cell invasion and integration upon implantation. Our central
hypothesis is that the incorporation of fibrous structure into synthetic hydrogels will increase the rate of assembly
and maturation of microvessels as well as increase host cell invasion upon implantation, both of which will lead
to faster anastomosis and perfusion in vivo. Our preliminary data utilizing electrospun fibrous matrices supports
this hypothesis, indicating that deformable fibrous microenvironments promote mechanical communication
between ECs that underlies the formation and maturation of multicellular structures. In the first aim we will utilize
3D fiber reinforced dextran vinyl sulfone (DexVS) synthetic hydrogels to investigate the role of mechanical
communication in the formation and maturation of functional microvascular networks. We will first determine
optimal physical matrix conditions (e.g. bulk stiffness, fiber density) that support long range force transmission
and mechanical communication by quantifying cell force mediated 3D matrix deformations. Additionally, we will
utilize these results to intelligently design fibrous DexVS hydrogels that promote rapid formation of mature,
functional vascular networks. Maturation of these networks will be analyzed by quantifying network morphology,
strength of cell-cell junctions, and anastomoses and perfusion within a microfluidic device. In Aim 2, we will
determine the ability of prevascularized fibrous DexVS matrices to support rapid host engraftment in a SCID-
mouse subcutaneous model. Implants will be dissected from mice at various time points within the first week to
quantify perfusion rate of implanted vessels as well as host cell invasion into the graft. The contribution of this
work is expected to be a novel synthetic fibrous biomaterial that supports rapid vessel formation and host
engraftment as well as a better understanding of how biomaterial physical properties regulate the success of
prevascularized tissue constructs. The information gleaned from these studies will be critical to the advancement
of biomaterial design for tissue engineering and regenerative medicine applications.
项目概要
组织工程和再生医学是一个快速发展的领域,致力于开发生物结构
恢复、维持或改善组织或器官的功能。虽然过去几十年有报道称
在相对较薄的非血管化组织中取得成功,大而复杂的组织的发育需要
植入后整个结构有足够的血液供应。具体来说,快速集成(~1 天)
工程化的脉管系统为活体中的所有细胞提供营养和氧气,对于移植物的存活至关重要
构造。虽然许多人报道了血管网络在体外成功组装、血管成熟和
植入后宿主脉管系统的快速吻合仍然是重大挑战。因此,长期目标
这项工作的目的是建立一种预血管化生物材料,支持快速宿主整合和后续
灌注。为了实现这一目标,本提案的总体目标是了解 ECM 物理的作用
特性,特别是纤维微观结构,1) 调节内皮细胞 (EC) 自组装成
成熟的血管网络;2) 促进宿主细胞在植入后的侵袭和整合。我们的中央
假设将纤维结构纳入合成水凝胶中将提高组装速度
和微血管的成熟以及增加植入后宿主细胞的侵袭,这两者都会导致
以便更快地进行体内吻合和灌注。我们利用电纺纤维基质的初步数据支持
这一假设表明可变形纤维微环境促进机械通讯
EC 之间是多细胞结构形成和成熟的基础。在第一个目标中,我们将利用
3D 纤维增强右旋糖酐乙烯基砜 (DexVS) 合成水凝胶研究机械作用
功能性微血管网络的形成和成熟中的通讯。我们首先会确定
支持长距离力传递的最佳物理矩阵条件(例如体积刚度、纤维密度)
通过量化细胞力介导的 3D 矩阵变形来实现机械通讯。此外,我们将
利用这些结果智能设计纤维 DexVS 水凝胶,促进成熟、
功能性血管网络。这些网络的成熟度将通过量化网络形态来分析,
细胞与细胞连接的强度以及微流体装置内的吻合和灌注。在目标 2 中,我们将
确定预血管化纤维 DexVS 基质支持 SCID 中快速宿主植入的能力
小鼠皮下模型。将在第一周内的不同时间点从小鼠身上解剖植入物,以
量化植入血管的灌注率以及宿主细胞侵入移植物的情况。本次活动的贡献
预计工作将是一种新型合成纤维生物材料,支持快速血管形成和宿主
植入以及更好地了解生物材料的物理特性如何调节成功
预血管化的组织结构。从这些研究中收集的信息对于进展至关重要
组织工程和再生医学应用的生物材料设计。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Durbin Davidson其他文献
Christopher Durbin Davidson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Translational Multimodal Strategy for Peri-Implant Disease Prevention
种植体周围疾病预防的转化多模式策略
- 批准号:
10736860 - 财政年份:2023
- 资助金额:
$ 1.9万 - 项目类别:
Reactive aldehydes and alcohol misuse in lung infections
肺部感染中的活性醛和酒精滥用
- 批准号:
10581148 - 财政年份:2023
- 资助金额:
$ 1.9万 - 项目类别:
Endothelial-Leukocyte Adhesion in CAR T Cell Treatment Associated Neurotoxicity
CAR T 细胞治疗相关神经毒性中的内皮-白细胞粘附
- 批准号:
10735681 - 财政年份:2023
- 资助金额:
$ 1.9万 - 项目类别:
Molecular mechanisms of gap junction promotion of lesion formation in Endometriosis
间隙连接促进子宫内膜异位症病变形成的分子机制
- 批准号:
10772708 - 财政年份:2023
- 资助金额:
$ 1.9万 - 项目类别: