Structured light temporal focusing depth-resolved wide-field FLIM-FRET for in vivo synaptic imaging
用于体内突触成像的结构光时间聚焦深度分辨宽视场 FLIM-FRET
基本信息
- 批准号:10467534
- 负责人:
- 金额:$ 28.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-10 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAlzheimer&aposs DiseaseBindingBrainCell Culture TechniquesCellsChimeric ProteinsCognition DisordersColorCoupledDendritesDetectionDevelopmentDissociationElectron MicroscopyExhibitsFluorescenceFluorescence MicroscopyFluorescence Resonance Energy TransferFunctional disorderGoalsHourImageIndividualLabelLifeLightMeasurementMeasuresMental disordersMethodsMicroscopeMicroscopyModificationMolecularMonitorMorphologic artifactsMotionMusNeurobiologyNeurodegenerative DisordersNeuronsOpticsPatternPerformancePhotonsPhysiologicalPresynaptic TerminalsProteinsPyramidal CellsResolutionScanningSchizophreniaSeriesSideSignal TransductionSiteSpecimenStructureSymptomsSynapsesSynaptic CleftSystemTechnology TransferTestingThickTimeTissuesVariantbasechemical bonddesigndetectorfluorophoreimaging approachimprovedin vivoin vivo evaluationin vivo monitoringintermolecular interactionmillisecondnanometernanosecondnovel strategiesparallelizationpostsynapticrelating to nervous systemresidencesynaptogenesistwo-photon
项目摘要
In spite of recent progress, our understanding of cognitive disorders remains tenuous. While outward
symptoms of neurodegenerative and mental disorders, ranging from Alzheimer’s to schizophrenia, are readily
apparent, their underlying cellular mechanisms are unclear. Most, if not all, exhibit some form of synaptic
dysfunction and/or circuit abnormality. Unfortunately, our ability to monitor disruptions in synapse or circuit
connectivity as they occur in vivo has been hindered by the difficulty of visualizing individual synaptic contacts
at sufficient resolution to discern their formation or elimination. The primary challenge for imaging synaptic
connections lies in the narrow cleft separation of 20-50 nm that is far below optical resolution. Here we propose
a new approach to identify synapse formation and dissociation in vivo by monitoring the distance between pre-
and post-synaptic protein pairs using fluorescence resonance energy transfer (FRET). In Specific aim 1 we will
develop wide-field depth-resolved FLIM-FRET by implementing De-scattering with Excitation Patterning (DEEP),
a wide-field depth resolved imaging approach based on structured light temporal focusing two-photon excitation
that we recently demonstrated is compatible with in vivo neural imaging. We propose implementing DEEP for
FLIM by using avalanche photodiode arrays with nanosecond gating to simultaneously resolve lifetimes with
over two thousand detectors. For testing microscope development, we will express in the mouse brain, in vivo,
known intramolecular FRET pairs using our previously developed methods for sparse, multi-fluorophore neuronal
labeling. In Specific aim 2 we will generate a series of FRET donor/acceptor molecules fused to variants of the
neuroligin-neurexin trans-synaptic partners in a variety of configurations, designed so that donor-acceptor
distance is kept within ~5 nm in the bound state for FRET to occur. These fusion constructs will be screened in
cultured neurons and selected based on faithful synaptic localization, lack of interference to normal synaptic
dynamics, and the presence of strong FRET signal upon fusion partner binding. The in vivo labeling strategy will
be a modification of one we recently developed for imaging Layer 2/3 pyramidal cell dendritic arbors and their
resident synapses in vivo using a three-color two-photon system, modified to avoid co-expression of donor and
acceptor in the same cell. The postsynaptic fusion protein will be co-expressed with a cell fill to visualize a single
targeted cell with all its postsynaptic sites. Where these sites contact labeled presynaptic terminals, transsynaptic
binding should place the fluorescent donor/acceptor pairs in close proximity, allowing FRET. Selected pairs will
then be tested in vivo in the brain for performance in the presence of autofluorescence and signal loss from
scattering in deep layers.
尽管最近取得了进展,但我们对认知障碍的理解仍然很薄弱。
从阿尔茨海默病到精神分裂症,神经退行性疾病和精神疾病的症状很容易被发现
显然,它们的潜在细胞机制尚不清楚,大多数(如果不是全部)都表现出某种形式的突触。
不幸的是,我们监测突触或电路中断的能力。
由于难以可视化单个突触接触,阻碍了体内发生的连接性
以足够的分辨率来辨别突触的形成或消除是成像突触的主要挑战。
连接位于 20-50 nm 的窄缝间隔中,远低于光学分辨率。
一种通过监测前突触之间的距离来识别体内突触形成和解离的新方法
在特定目标 1 中,我们将使用荧光共振能量转移 (FRET) 来检测突触后蛋白质对。
通过实施激发图案去散射 (DEEP) 开发宽视场深度分辨 FLIM-FRET,
基于结构光时间聚焦双光子激发的宽视场深度分辨成像方法
我们最近证明它与体内神经成像兼容,我们建议实施 DEEP。
FLIM 通过使用具有纳秒门控的雪崩光电二极管阵列来同时解析寿命
为了测试显微镜的发展,我们将在小鼠大脑中表达,
使用我们之前开发的稀疏、多荧光团神经元方法已知的分子内 FRET 对
在特定目标 2 中,我们将生成一系列融合到变体的 FRET 供体/受体分子。
Neuroligin-neurexin 跨突触伙伴具有多种构型,其设计使得供体-受体
在结合状态下,距离保持在约 5 nm 以内,以便发生 FRET 融合构建体。
培养的神经元并根据忠实的突触定位进行选择,不干扰正常的突触
动力学,以及融合伴侣结合时强 FRET 信号的存在。
是我们最近开发的一种改进型,用于对第 2/3 层锥体细胞树突乔木及其结构进行成像
使用三色双光子系统体内驻留突触,经过修改以避免供体和
突触后融合蛋白将与细胞填充物共表达以可视化单个细胞。
目标细胞及其所有突触后位点,这些位点与标记的突触前末梢、突触后位点接触。
结合应使荧光供体/受体对非常接近,从而允许选定的对进行 FRET。
然后在大脑中进行体内测试,以检测存在自发荧光和信号丢失的情况下的性能
散射在深层。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elly Nedivi其他文献
Elly Nedivi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elly Nedivi', 18)}}的其他基金
Developing a Strategy for 4-Color in Vivo Two-Photon Imaging
开发体内四色双光子成像策略
- 批准号:
10577846 - 财政年份:2022
- 资助金额:
$ 28.53万 - 项目类别:
Characterizing excitatory synapse in vivo structural dynamics
表征兴奋性突触体内结构动力学
- 批准号:
10708899 - 财政年份:2022
- 资助金额:
$ 28.53万 - 项目类别:
Structured light temporal focusing depth-resolved wide-field FLIM-FRET for in vivo synaptic imaging
用于体内突触成像的结构光时间聚焦深度分辨宽视场 FLIM-FRET
- 批准号:
10570189 - 财政年份:2022
- 资助金额:
$ 28.53万 - 项目类别:
Developing a strategy for 4-color in vivo two-photon imaging
开发 4 色体内双光子成像策略
- 批准号:
10459675 - 财政年份:2022
- 资助金额:
$ 28.53万 - 项目类别:
Characterizing excitatory synapse in vivo structural dynamics
表征兴奋性突触体内结构动力学
- 批准号:
10512611 - 财政年份:2022
- 资助金额:
$ 28.53万 - 项目类别:
in vivo imaging of inhibitory circuit remodeling in mouse visual cortex
小鼠视觉皮层抑制电路重塑的体内成像
- 批准号:
9042367 - 财政年份:2015
- 资助金额:
$ 28.53万 - 项目类别:
New technologies for in vivo spectral resolved high speed multiphoton microscopsy
体内光谱分辨高速多光子显微镜新技术
- 批准号:
9021702 - 财政年份:2015
- 资助金额:
$ 28.53万 - 项目类别:
in vivo imaging of circuit remodeling in mouse visual cortex
小鼠视觉皮层回路重塑的体内成像
- 批准号:
10207000 - 财政年份:2015
- 资助金额:
$ 28.53万 - 项目类别:
in vivo imaging of inhibitory circuit remodeling in mouse visual cortex
小鼠视觉皮层抑制电路重塑的体内成像
- 批准号:
9254550 - 财政年份:2015
- 资助金额:
$ 28.53万 - 项目类别:
New technologies for in vivo spectral resolved high speed multiphoton microscopsy
体内光谱分辨高速多光子显微镜新技术
- 批准号:
8878595 - 财政年份:2015
- 资助金额:
$ 28.53万 - 项目类别:
相似国自然基金
基于神经退行性疾病前瞻性队列的新烟碱类杀虫剂暴露对阿尔茨海默病的影响及作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
基于miRNA介导ceRNA网络调控作用的防治阿尔茨海默病及认知障碍相关疾病药物的发现研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
LMTK1调控核内体转运介导阿尔茨海默病神经元Reserve机制研究
- 批准号:81903703
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于自组装多肽纳米探针检测蛋白标志物用于阿尔茨海默病精准诊断的研究
- 批准号:31900984
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
靶向干预CD33/Aβ相互作用改善小胶质细胞功能延缓AD病理进程
- 批准号:81901072
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 28.53万 - 项目类别:
Project 3: 3-D Molecular Atlas of cerebral amyloid angiopathy in the aging brain with and without co-pathology
项目 3:有或没有共同病理的衰老大脑中脑淀粉样血管病的 3-D 分子图谱
- 批准号:
10555899 - 财政年份:2023
- 资助金额:
$ 28.53万 - 项目类别:
Impact of Mitochondrial Lipidomic Dynamics and its Interaction with APOE Isoforms on Brain Aging and Alzheimers Disease
线粒体脂质组动力学及其与 APOE 亚型的相互作用对脑衰老和阿尔茨海默病的影响
- 批准号:
10645610 - 财政年份:2023
- 资助金额:
$ 28.53万 - 项目类别:
Deciphering the Glycan Code in Human Alzheimer's Disease Brain
破译人类阿尔茨海默病大脑中的聚糖代码
- 批准号:
10704673 - 财政年份:2023
- 资助金额:
$ 28.53万 - 项目类别: