Impact of DNA double-strand breaks on 3D genome organization and genome stability in Alzheimer’s disease
DNA 双链断裂对阿尔茨海默病 3D 基因组组织和基因组稳定性的影响
基本信息
- 批准号:10463836
- 负责人:
- 金额:$ 13.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalATAC-seqAdoptedAdvisory CommitteesAgingAlzheimer&aposs DiseaseAlzheimer&aposs disease brainAlzheimer&aposs disease modelAlzheimer&aposs disease riskAutopsyBiological AssayBiologyBrainCellsChIP-seqChromatinChromosomal translocationCoculture TechniquesComplexDNADNA BindingDNA DamageDNA Double Strand BreakDataDevelopmentDiseaseDisease associated microgliaFrequenciesGene ExpressionGenomeGenome StabilityGenomic InstabilityGenomicsGoalsHi-CHumanHyperactivityImmediate-Early GenesInduced pluripotent stem cell derived neuronsKnockout MiceLabelLeadLocationMeasuresMediatingMentorsMentorshipMicrogliaMissionModelingMolecularMosaicismMusMutationNerve DegenerationNeurodegenerative DisordersNeurogliaNeuronal DysfunctionNeuronsNonhomologous DNA End JoiningOligodendrogliaOrthologous GenePartner in relationshipPathogenesisPathologicPathway interactionsPatternPharmacologyPhasePlayPublic HealthPublishingRecurrenceReportingRoleTauopathiesTechnologyTestingTherapeutic InterventionTrainingWorkaging braincell typechromosome conformation capturecohesincomputational pipelinesexperiencefamilial Alzheimer diseaseimprovedin situ sequencinginduced pluripotent stem cellinduced pluripotent stem cell technologymouse modelnervous system disordernovelnovel therapeuticspresenilin-1preventpromoterresponsesingle cell analysissingle-cell RNA sequencingtherapeutic evaluationtooltranscription factortranscriptome
项目摘要
PROJECT SUMMARY/ABSTRACT
The accumulation of DNA Double-Strand Breaks (DSBs) in neurons is an early hallmark of Alzheimer’s disease
(AD). Increased DSBs are also associated with aging, which is the largest risk factor for AD. AD is also a complex
disease involving all major brain glial cell types. Thus, there is a critical need to understand the molecular
mechanisms of DSB induced changes in both neurons and glia. The structural stability of the genome is
paramount in maintaining a functional genome, and recently, the 3D organization of the genome has emerged
as a major regulator of genome function. My overall hypothesis is that 3D genome reorganization and structural
genome instability mediated by DSBs are principle drivers of AD pathogenesis and brain aging. My objective is
to determine how and to what extent DSBs within the neurons impact genome organization and the glial
response, with the goal of identifying molecular pathways that can be targeted as novel therapies for preventing
or halting the progression of neurodegeneration. I will use mouse models that recapitulate the pre-symptomatic
accumulation of DSBs in neurons and human iPSC models to determine the degree of the 3D genome disruption
caused due to DSBs and the underlying molecular mechanisms. I will also identify the consequences of neuronal
DSBs on the structural stability of the genome by measuring the frequency of DSB mediated chromosomal
translocations in human AD neurons. Interestingly, normal neuronal activity causes DSBs at immediate early
gene promoters. Also, neuronal hyperactivity has been reported in AD. I will test if IEGs are locations of frequent
chromosomal translocations after neuronal hyperactivity induced in neuronal culture.
Previous studies have shown that microglia transitions to a reactive state in response to
neurodegeneration. To understand the role of the 3D genome organization in this microglia transition, I will use
single cell Hi-C to measure the unique chromatin interactions that mediate the reactive microglia state.
Subsequently, transcription factor predictions using integrative analysis of single cell Hi-C will be tested in iPSC
derived microglia-neuron co-cultures for their potential to modulate the reactive microglia response. This
approach will be extended to study oligodendrocyte response in the independent phase.
I will work with my mentor Dr. Li-Huei Tsai, my mentorship committee, Dr. Bruce Yankner and Dr. Manolis
Kellis, my technical support and advisory committee, Dr. Frederick Alt and Dr. Peter Fraser to carry out my
proposed training plan. I will gain experience in iPSC technology and differentiation from the Tsai lab to modulate
the disease associated microglia response to neuronal DSBs and work with Dr. Manolis Kellis to implement the
computational pipelines for the transcription factor predictions. To bridge the gap in my training in the biology of
AD and brain aging, I will audit relevant courses and receive additional mentoring from Dr. Bruce Yankner.
项目概要/摘要
神经元中 DNA 双链断裂 (DSB) 的积累是阿尔茨海默病的早期标志
DSB 增加也与衰老有关,这是 AD 的最大危险因素,也是一个复杂的因素。
涉及所有主要脑神经胶质细胞类型的疾病因此,迫切需要了解其分子机制。
DSB 诱导神经元和神经胶质细胞变化的机制是基因组的结构稳定性。
对于维持功能基因组至关重要,最近,基因组的 3D 组织已经出现
我的总体假设是 3D 基因组重组和结构。
DSB 介导的基因组不稳定性是 AD 发病机制和大脑衰老的主要驱动因素。
确定神经元内的 DSB 如何以及在何种程度上影响基因组组织和神经胶质细胞
反应,目标是确定可作为预防新疗法的分子途径
或阻止神经退行性变的进展,我将使用重现症状前的小鼠模型。
DSB 在神经元和人类 iPSC 模型中的积累,以确定 3D 基因组破坏的程度
由于 DSB 和潜在的分子机制引起的,我还将确定神经的后果。
通过测量 DSB 介导的染色体频率来观察 DSB 对基因组结构稳定性的影响
人类 AD 神经元中的易位表明,正常的神经元活动会在早期引起 DSB。
此外,AD 中也有神经元过度活跃的报道,我将测试 IEG 是否是频繁出现的位置。
神经过度活跃诱导神经培养物活动后的染色体易位。
先前的研究表明,小胶质细胞会转变为反应状态以响应
为了了解 3D 基因组组织在小胶质细胞转变中的作用,我将使用
单细胞 Hi-C 来测量介导反应性小胶质细胞状态的独特染色质相互作用。
随后,将在 iPSC 中测试使用单细胞 Hi-C 综合分析的转录因子预测
衍生的小胶质细胞-神经元共培养物具有调节反应性小胶质细胞反应的潜力。
该方法将扩展到研究独立阶段少突胶质细胞的反应。
我将与我的导师 Li-Huei Tsai 博士、我的导师委员会 Bruce Yankner 博士和 Manolis 博士一起工作
凯利斯 (Kellis)、我的技术支持和咨询委员会、弗雷德里克·阿尔特 (Frederick Alt) 博士和彼得·弗雷泽 (Peter Fraser) 博士来执行我的
我将从 Tsai 实验室获得 iPSC 技术和分化方面的经验来进行调整。
与疾病相关的小胶质细胞对神经元 DSB 的反应,并与 Manolis Kellis 博士合作实施
转录因子预测的计算管道弥补了我在生物学训练中的差距。
AD 和大脑老化,我将旁听相关课程并接受 Bruce Yankner 博士的额外指导。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vishnu Dileep其他文献
Vishnu Dileep的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vishnu Dileep', 18)}}的其他基金
Impact of DNA double-strand breaks on 3D genome organization and genome stability in Alzheimer’s disease
DNA 双链断裂对阿尔茨海默病 3D 基因组组织和基因组稳定性的影响
- 批准号:
10282373 - 财政年份:2021
- 资助金额:
$ 13.67万 - 项目类别:
相似国自然基金
基于ATAC-seq策略挖掘穿心莲基因组中调控穿心莲内酯合成的增强子
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于单细胞ATAC-seq技术的C4光合调控分子机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于ATAC-seq技术研究交叉反应物质197调控TFEB介导的自噬抑制子宫内膜异位症侵袭的分子机制
- 批准号:82001520
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
人类胎盘合体滋养层形成分子机制及其与子痫前期发生关联的研究
- 批准号:31900602
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
单细胞RNA和ATAC测序解析肌肉干细胞激活和增殖中的异质性研究
- 批准号:31900570
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Engineering 3D Osteosarcoma Models to Elucidate Biology and Inform Drug Discovery
工程 3D 骨肉瘤模型以阐明生物学并为药物发现提供信息
- 批准号:
10564801 - 财政年份:2023
- 资助金额:
$ 13.67万 - 项目类别:
Impact of DNA double-strand breaks on 3D genome organization and genome stability in Alzheimer’s disease
DNA 双链断裂对阿尔茨海默病 3D 基因组组织和基因组稳定性的影响
- 批准号:
10282373 - 财政年份:2021
- 资助金额:
$ 13.67万 - 项目类别:
Highly scalable and sensitive spatial transcriptomic and epigenomic sequencing of brain tissues from human and non-human primate
对人类和非人类灵长类动物的脑组织进行高度可扩展且灵敏的空间转录组和表观基因组测序
- 批准号:
10370074 - 财政年份:2021
- 资助金额:
$ 13.67万 - 项目类别: