Personalized Structural Biology: Enabling Exome Interpretation in Undiagnosed Diseases
个性化结构生物学:在未确诊疾病中实现外显子组解释
基本信息
- 批准号:10462539
- 负责人:
- 金额:$ 33.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-05 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAlgorithmsBenignBiologyClinicClinicalCodeCollaborationsComputing MethodologiesDataDatabasesDevelopmentDiagnosisDiseaseEnrollmentFoundationsGenerationsGeneticGenetic AnnotationGenetic CodeGenetic DiseasesGenetic VariationGenomeGenomicsGoalsHumanHuman GeneticsIndividualJointsLarge-Scale SequencingMachine LearningMapsMethodsModelingMolecularMutationNetwork-basedPathogenicityPatientsPhenotypePositioning AttributeProteinsProteomeRare DiseasesSet proteinSiteStructural ModelsStructureSystemSystems BiologyTherapeuticTrainingTreatment StepValidationVariantalgorithm developmentbaseclinical sequencingclinically relevantclinically significantcomputer frameworkcomputerized toolsexomefollow-upgenetic informationgenetic variantindividual patientinnovationinsertion/deletion mutationmachine learning methodpersonalized medicinepersonalized predictionsprecision medicineprotein structureprotein structure functionstructural biologysuccesstargeted treatmentthree dimensional structuretooltreatment strategyvariant of unknown significance
项目摘要
PROJECT SUMMARY
Our long-term goal is to establish personalized structural biology – a precision medicine approach for inter-
preting clinical sequencing data by jointly modeling all mutations in a patient’s proteome in the context of protein
3D structures, known human genetic variation, and other relevant data. In this project, we will develop the com-
putational tools needed to integrate the wealth of available genetic variation data with cutting edge algorithms
for efficiently modeling mutations to human protein structures and accurately quantifying their specific functional
effects. This will provide a rich characterization of healthy and diseased proteomes and the means to generate
actionable hypotheses about the effects of variants of unknown significance in individual patients. To demon-
strate the power and relevance of this approach, we will apply it to facilitate variant interpretation in individuals
in the Undiagnosed Diseases Network (UDN). We will then collaborate to validate our predictions.
Our central hypothesis is that achieving the full promise of precision medicine requires the interpretation
of a patient’s genetic variants in their 3D structural contexts and the integration of structural and clinical infor-
mation. Patient genome interpretation is a major roadblock to fully realizing the transformative potential of per-
sonalized medicine in the clinic. Current approaches for characterizing protein-coding variants of unknown sig-
nificance have several shortcomings that limit their practical utility. First, they are not personalized; most are
trained en masse on databases of known mutations across thousands of individuals. Thus, they are subject to
ascertainment bias and ignore the background of other variants present in the individual. Second, most fail to
provide specific biologically interpretable and thus therapeutically actionable predictions of a mutation’s effects
beyond “benign” or “pathogenic”. Third, they are not stable and similar methods often disagree. Fourth, most are
unable to interpret multi-base insertions and deletions. As a result and most importantly, current methods often
give insufficient guidance to clinicians and fail to personalize next steps of treatment.
Computational methods for modeling the effects of mutations on protein structures are now sufficiently
fast and accurate to provide a solution to these challenges. Building on our expertise in analyzing the effects of
mutations and modeling protein structures, the following aims establish a computational framework for interpre-
tation of exonic variants that is personalized, clinically relevant, accurate, and applicable to all mutation types.
项目概要
我们的长期目标是建立个性化结构生物学——一种针对不同个体之间的精准医学方法
通过在蛋白质背景下联合建模患者蛋白质组中的所有突变来准备临床测序数据
在这个项目中,我们将开发 3D 结构、已知的人类遗传变异和其他相关数据。
将大量可用遗传变异数据与尖端算法集成所需的推论工具
用于有效模拟人类蛋白质结构的突变并准确量化其特定功能
这将提供健康和患病蛋白质组的丰富表征以及生成方法。
关于未知意义的变异对个体患者的影响的可行假设。
阐明这种方法的力量和相关性,我们将应用它来促进个人的变异解释
然后我们将合作验证我们的预测。
我们的中心假设是,实现精准医学的全部承诺需要解释
患者的 3D 结构背景中的遗传变异以及结构和临床信息的整合
患者基因组解释是充分实现个体变革潜力的主要障碍。
目前用于表征未知信号的蛋白质编码变体的方法。
重要性有几个缺点限制了它们的实用性:首先,它们大多数都不是个性化的。
对数千人的已知突变数据库进行集体训练,因此,他们受到了影响。
其次,大多数人都未能做到这一点。
提供特定的生物学可解释的、因此在治疗上可行的突变效应预测
除了“良性”或“致病性”之外,它们还不稳定,并且类似的方法常常不一致。
因此,最重要的是,当前的方法通常无法解释多碱基插入和删除。
对后续治疗步骤的指导不足,也未能实现个性化。
用于模拟突变对蛋白质结构影响的计算方法现在已经足够了
凭借我们在分析影响方面的专业知识,快速、准确地为这些挑战提供解决方案。
突变和蛋白质结构建模,以下目标建立一个计算框架来解释
外显子变异的定位是个性化的、临床相关的、准确的并且适用于所有突变类型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Anthony Capra其他文献
John Anthony Capra的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Anthony Capra', 18)}}的其他基金
Personalized Structural Biology: Enabling Exome Interpretation in Undiagnosed Diseases
个性化结构生物学:在未确诊疾病中实现外显子组解释
- 批准号:
10211423 - 财政年份:2021
- 资助金额:
$ 33.99万 - 项目类别:
Personalized Structural Biology: Enabling Exome Interpretation in Undiagnosed Diseases
个性化结构生物学:在未确诊疾病中实现外显子组解释
- 批准号:
10641002 - 财政年份:2021
- 资助金额:
$ 33.99万 - 项目类别:
The Evolution of Gene Regulation and Human Disease
基因调控的进化与人类疾病
- 批准号:
10460911 - 财政年份:2018
- 资助金额:
$ 33.99万 - 项目类别:
The Evolution of Gene Regulation and Human Disease
基因调控的进化与人类疾病
- 批准号:
9904747 - 财政年份:2018
- 资助金额:
$ 33.99万 - 项目类别:
The Evolution of Gene Regulation and Human Disease
基因调控的进化与人类疾病
- 批准号:
10321189 - 财政年份:2018
- 资助金额:
$ 33.99万 - 项目类别:
Modeling the Dynamics of Genome-Scale Data Across Trees
跨树基因组规模数据的动态建模
- 批准号:
9306885 - 财政年份:2015
- 资助金额:
$ 33.99万 - 项目类别:
Modeling the Dynamics of Genome-Scale Data Across Trees
跨树基因组规模数据的动态建模
- 批准号:
9117563 - 财政年份:2015
- 资助金额:
$ 33.99万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 33.99万 - 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 33.99万 - 项目类别:
Computer-Aided Triage of Body CT Scans with Deep Learning
利用深度学习对身体 CT 扫描进行计算机辅助分类
- 批准号:
10585553 - 财政年份:2023
- 资助金额:
$ 33.99万 - 项目类别:
High-resolution cerebral microvascular imaging for characterizing vascular dysfunction in Alzheimer's disease mouse model
高分辨率脑微血管成像用于表征阿尔茨海默病小鼠模型的血管功能障碍
- 批准号:
10848559 - 财政年份:2023
- 资助金额:
$ 33.99万 - 项目类别:
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
- 批准号:
10831226 - 财政年份:2023
- 资助金额:
$ 33.99万 - 项目类别: