Molecular mechanisms of mammalian circadian clock function
哺乳动物生物钟功能的分子机制
基本信息
- 批准号:10458088
- 负责人:
- 金额:$ 58.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-07 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:ARNTL geneAutomobile DrivingBehaviorBiochemistryCardiovascular DiseasesCell physiologyCholesterol HomeostasisCircadian DysregulationCircadian RhythmsClock proteinCrystallizationCytosolDataDiabetes MellitusExhibitsFeedbackFutureGene ExpressionGenesGeneticGenetic TranscriptionHealthHumanJet Lag SyndromeLengthLinkLiverMalignant NeoplasmsMammalsMediator of activation proteinMental disordersMessenger RNAMetabolicMitochondriaModalityModelingMolecularMusObesityPeriodicityPhysiologyPoly(A) TailPolyadenylationPost-Transcriptional RegulationProteinsRegulationResistanceRoleStructureSystemTailTimeTranslational RegulationTriglyceride MetabolismWorkcircadiancircadian pacemakercomplex datacryptochrome 1cryptochrome 2diet-induced obesityinsightnocturninprotein expressionshift worktranscription factor
项目摘要
Abstract
Circadian clocks throughout the body drive rhythmic expression of thousands of genes, resulting in
rhythms in biochemistry, physiology and behavior. Disruption of circadian clocks through genetics or
environmental perturbations such as jet lag or shift-work, can have profound negative consequences
and has been linked to obesity, diabetes, cancer, cardiovascular disease and mental illness. Our
work is focused generally on understanding the detailed molecular mechanisms of the mammalian
circadian clock machinery and the mechanisms by which these clocks control rhythmic gene
expression. According to the current model, the core part of this clock mechanism is a negative
feedback loop whereby the transcription factor heterodimer CLOCK/BMAL1 drives transcription of the
“clock” proteins PERIOD (PER) 1, PER 2, CRYPTOCHROME (CRY) 1 and CRY 2 which interact with
each other to repress the activity of CLOCK/BMAL1, and thus their own synthesis. We have solved
crystal structures for the CLOCK/BMAL1 and CRY2/PER2 complexes and these data have allowed
the identification of evolutionarily conserved functional domains throughout the proteins and revealed
additional insights into the mechanisms by which these proteins operate and set the circadian period.
Over the next five years, we will expand on this information to determine the atomic details of how
this clock keeps time. The roles of these core circadian clock transcription factors in driving rhythmic
transcription is well-documented, but recent data have demonstrated that post-transcriptional control,
although much less well understood, is also critical for normal rhythmic protein expression profiles.
One type of post-transcriptional control is regulation of mRNA poly(A) tail length, which impacts the
stability and translational regulation of mRNA. We have identified hundreds of mouse liver mRNAs
that exhibit robust circadian rhythms in the length of their poly(A) tails. In many of these cases, the
rhythmic tail lengths are the result of rhythmic cytoplasmic polyadenylation and deadenylation
rhythms and many components of the cytoplasmic polyadenylation and deadenylation machinery are
themselves under circadian control. Furthermore, the rhythmic poly(A) tails are closely correlated
with the rhythmic protein expression. Therefore, the circadian clock regulates dynamic
polyadenylation status of many mRNAs that can drive rhythmic protein expression independent of the
steady-state levels of the message. Nocturnin is a robustly rhythmic protein that removes poly(A) tails
from mRNAs. We have shown that loss of this gene in mice causes resistance to diet-induced
obesity and altered rhythms in cholesterol and triglyceride metabolism, implicating it as an important
circadian post-transcriptional mediator. Over the next five years, we will focus on identifying the
mRNA substrates of Nocturnin both in the cytosol and in the mitochondria.
抽象的
全身的昼夜节律时钟驱动着数千个基因的有节奏的表达,从而导致
通过遗传学或行为扰乱生物钟。
时差或轮班工作等环境干扰可能会产生深远的负面后果
并且与肥胖、糖尿病、癌症、心血管疾病和精神疾病有关。
工作主要集中于了解哺乳动物的详细分子机制
生物钟机制以及这些生物钟控制节律基因的机制
根据目前的模型,这个时钟机制的核心部分是负数。
反馈环路,转录因子异二聚体 CLOCK/BMAL1 驱动
“时钟”蛋白 PERIOD (PER) 1、PER 2、CRYPTOCHROME (CRY) 1 和 CRY 2 与
彼此抑制CLOCK/BMAL1的活性,从而它们自己的合成我们已经解决了。
CLOCK/BMAL1 和 CRY2/PER2 复合体的晶体结构,这些数据允许
鉴定整个蛋白质中进化保守的功能域并揭示
对这些蛋白质运作和设定昼夜节律的机制有更多的了解。
在接下来的五年里,我们将扩展这些信息,以确定如何处理的原子细节
这些核心生物钟转录因子在驱动节律方面发挥着作用。
转录有详细记录,但最近的数据表明,转录后控制,
尽管了解较少,但对于正常的节律蛋白表达谱也至关重要。
转录后控制的一种类型是调节 mRNA 聚 (A) 尾长度,这会影响
我们已经鉴定了数百种小鼠肝脏 mRNA。
在许多情况下,它们的多聚(A)尾巴的长度表现出强大的昼夜节律。
有节奏的尾长是有节奏的细胞质多腺苷酸化和去腺苷酸化的结果
细胞质多腺苷酸化和去腺苷酸化机制的节律和许多组成部分
此外,有节律的poly(A)尾部密切相关。
因此,生物钟动态调节。
许多 mRNA 的多腺苷酸化状态可以驱动有节奏的蛋白质表达,与
Nocturnin 是一种强大的节律蛋白,可去除多聚 (A) 尾部。
我们已经证明,小鼠体内该基因的缺失会导致对饮食诱导的抵抗力。
肥胖以及胆固醇和甘油三酯代谢节律的改变,表明它是一个重要的
在接下来的五年里,我们将专注于识别昼夜节律转录后调节因子。
细胞质和线粒体中 Nocturnin 的 mRNA 底物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carla B. Green其他文献
Carla B. Green的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carla B. Green', 18)}}的其他基金
Role of the circadian protein Nocturnin in modulating oxidative stress in substantia nigra dopaminergic neurons
昼夜节律蛋白Nocturnin在调节黑质多巴胺能神经元氧化应激中的作用
- 批准号:
10066683 - 财政年份:2020
- 资助金额:
$ 58.26万 - 项目类别:
Molecular mechanisms of mammalian circadian clock function
哺乳动物生物钟功能的分子机制
- 批准号:
10225593 - 财政年份:2018
- 资助金额:
$ 58.26万 - 项目类别:
Molecular mechanisms of mammalian circadian clock function
哺乳动物生物钟功能的分子机制
- 批准号:
9757788 - 财政年份:2018
- 资助金额:
$ 58.26万 - 项目类别:
Molecular mechanisms of mammalian circadian clock function
哺乳动物生物钟功能的分子机制
- 批准号:
10455876 - 财政年份:2018
- 资助金额:
$ 58.26万 - 项目类别:
Molecular mechanisms of mammalian circadian clock function - Renewal - 1
哺乳动物生物钟功能的分子机制 - 更新 - 1
- 批准号:
10623521 - 财政年份:2018
- 资助金额:
$ 58.26万 - 项目类别:
Molecular mechanisms of mammalian circadian clock function
哺乳动物生物钟功能的分子机制
- 批准号:
9980934 - 财政年份:2018
- 资助金额:
$ 58.26万 - 项目类别:
Circadian dynamics of cytoplasmic mRNA polyadenylation and deadenylation
细胞质 mRNA 多腺苷酸化和去腺苷酸化的昼夜动态
- 批准号:
9213380 - 财政年份:2016
- 资助金额:
$ 58.26万 - 项目类别:
Circadian dynamics of cytoplasmic mRNA polyadenylation and deadenylation
细胞质 mRNA 多腺苷酸化和去腺苷酸化的昼夜动态
- 批准号:
9026882 - 财政年份:2016
- 资助金额:
$ 58.26万 - 项目类别:
Circadian regulation of mitochondrial RNA polyadenylation
线粒体 RNA 多腺苷酸化的昼夜节律调节
- 批准号:
8747363 - 财政年份:2014
- 资助金额:
$ 58.26万 - 项目类别:
Circadian regulation of mitochondrial RNA polyadenylation
线粒体 RNA 多腺苷酸化的昼夜节律调节
- 批准号:
9090194 - 财政年份:2014
- 资助金额:
$ 58.26万 - 项目类别:
相似国自然基金
基于驾驶人行为理解的人机共驾型智能汽车驾驶权分配机制研究
- 批准号:52302494
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
定性与定量分析跟驰行驶中汽车驾驶员情感-行为交互作用机理
- 批准号:71901134
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
兼顾效率与能效的城市道路智能网联汽车驾驶行为优化及实证研究
- 批准号:71871028
- 批准年份:2018
- 资助金额:46.0 万元
- 项目类别:面上项目
汽车驾驶员疲劳的心理生理检测及神经机制
- 批准号:31771225
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
人机共驾型智能汽车驾驶行为特性及人机交互方法研究
- 批准号:51775396
- 批准年份:2017
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
Role of the ipRGC Circadian Clock in Visual Perception
ipRGC 生物钟在视觉感知中的作用
- 批准号:
10538097 - 财政年份:2022
- 资助金额:
$ 58.26万 - 项目类别:
Role of the ipRGC Circadian Clock in Visual Perception
ipRGC 生物钟在视觉感知中的作用
- 批准号:
10781913 - 财政年份:2022
- 资助金额:
$ 58.26万 - 项目类别:
Mechanistic Basis of Circadian Clocks in Bmal1 Knockout Mice
Bmal1 基因敲除小鼠生物钟的机制基础
- 批准号:
10399594 - 财政年份:2021
- 资助金额:
$ 58.26万 - 项目类别:
Mechanistic Basis of Circadian Clocks in Bmal1 Knockout Mice
Bmal1 基因敲除小鼠生物钟的机制基础
- 批准号:
10208370 - 财政年份:2021
- 资助金额:
$ 58.26万 - 项目类别: