Driving forces of membrane protein assembly in membranes
膜蛋白在膜中组装的驱动力
基本信息
- 批准号:10457421
- 负责人:
- 金额:$ 34.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:Amino Acid SequenceBindingBiological ModelsCLC GeneCell membraneCell physiologyCellsComputer ModelsComputing MethodologiesDefectDevelopmentDimerizationDissociationEntropyEnvironmentEquilibriumExhibitsFatty AcidsFluorescenceFluorobenzenesFoundationsFree EnergyGeneral anesthetic drugsGrainHydrophobicityKineticsLaboratoriesLinkLipid BilayersLipidsMacromolecular ComplexesMeasurementMeasuresMembraneMembrane ProteinsMethodsMicroscopyModelingMolecularMutationNutrientPharmacologyPhasePhysiologicalPhysiologyPropertyProtein-Folding DiseaseProteinsReactionRegulationResearch DesignRoleRouteSamplingSolventsSpecificitySterolsStructureTemperatureTheoretical modelThermodynamicsTimeTryptophanantiporterbasecomputer studiesdimerdriving forceenthalpyexperimental studyinterfacialmembrane assemblymolecular dynamicsmolecular modelingnovelphysical modelprotein foldingprotein structureself assemblysingle moleculetheorieswasting
项目摘要
ABSTRACT
Membrane proteins are responsible for controlling the passage of nutrients, waste, energy and information in
and out of cells. They are critical players in physiology and key targets for pharmacological regulation, however,
we lack a fundamental understanding of why these proteins are thermodynamically stable in cell membranes.
Simply put, why does a greasy protein surface find its greasy protein partner in the greasy lipid bilayer to
assemble faithfully into its stable, native structure? In order to investigate this question, the Robertson laboratory
has developed a robust and rigorous model system to study equilibrium protein association in membranes based
on the reversible dimerization of the CLC-ec1 Cl-/H+ antiporter. Through the development of fluorescence and
single-molecule microscopy approaches, it is now possible to experimentally conduct a full thermodynamic
analysis of the CLC dimerization reaction in lipid bilayers, yielding the free energy of association (ΔG°) and free
energy changes (ΔΔG) due to mutations or different lipid conditions. Recent advances have allowed us to study
CLC equilibrium as a function of temperature, enabling a van't Hoff analysis to dissect the thermodynamic
changes in enthalpy (ΔH°) and entropy (ΔS°) upon dimerization. In addition, we have developed methods for
measuring equilibrium kinetics of CLC dimerization in a tractable manner - in the membrane and in real-time.
With this foundation in place, the Robertson lab is primed to build a full molecular model of CLC dimerization in
membranes. In the next phase of this project, we will investigate the hypothesis that CLC subunits are driven to
associate due to differential solvent dependent driving forces in the associated and dissociated states, and that
the transition state involves a critical solvation/de-solvation step. We will investigate this along three distinct
aims, by building a theoretical model of the CLC dimerization free energy in membranes using computational
approaches (Aim 1), connecting the CLC sequence and structure to dimerization through experimental
measurements of thermodynamics and kinetics (Aim 2), and developing a guest-host approach to experimentally
and theoretically quantify the impact of mixed lipid composition on protein association equilibria in membranes
(Aim 3). Throughout each of these studies, we integrate experiments and theory hand-in-hand, enabling us to
make robust connections between physical driving forces and molecular mechanisms. Regardless of the validity
of our hypothesis, our studies will provide meaningful quantitative information to the study of membrane proteins
in membranes. Ultimately, we expect that the results from these studies will provide a foundation for the field to
build new strategies for targeting membrane protein stability and mis-folding based on fundamental physical
principles.
抽象的
膜蛋白负责控制营养物质、废物、能量和信息的通过
它们是生理学中的关键参与者和药理调节的关键目标,但是,
我们对为什么这些蛋白质在细胞膜中热力学稳定缺乏基本的了解。
简而言之,为什么油腻的蛋白质表面会在油腻的脂质双层中找到其油腻的蛋白质伴侣
忠实地组装成其稳定的天然结构?为了研究这个问题,罗伯逊实验室
开发了一个强大而严格的模型系统来研究基于膜的平衡蛋白质关联
通过荧光和 CLC-ec1 Cl-/H+ 反向转运蛋白的可逆二聚化。
单分子显微镜方法,现在可以通过实验进行完整的热力学
分析脂质双层中的 CLC 二聚反应,产生缔合自由能 (ΔG°) 和自由能
由于突变或不同的脂质条件而导致的能量变化(ΔΔG)使我们能够进行研究。
CLC 平衡作为温度的函数,使范特霍夫分析能够剖析热力学
此外,我们还开发了二聚化过程中焓 (ΔH°) 和熵 (ΔS°) 的变化。
以易于处理的方式在膜中实时测量 CLC 二聚化的平衡动力学。
有了这个基础,Robertson 实验室就准备建立 CLC 二聚化的完整分子模型
在该项目的下一阶段,我们将研究 CLC 亚基被驱动的假设。
由于缔合和解离状态下不同的溶剂依赖性驱动力而缔合,并且
过渡态涉及关键的溶剂化/去溶剂化步骤,我们将沿着三个不同的方向进行研究。
目标是,通过使用计算建立膜中 CLC 二聚自由能的理论模型
方法(目标 1),通过实验将 CLC 序列和结构与二聚化连接起来
热力学和动力学测量(目标 2),并开发宾主实验方法
并从理论上量化混合脂质成分对膜中蛋白质缔合平衡的影响
(目标 3)在每项研究中,我们将实验和理论紧密结合起来,使我们能够
无论有效性如何,在物理驱动力和分子机制之间建立牢固的联系。
根据我们的假设,我们的研究将为膜蛋白的研究提供有意义的定量信息
最终,我们希望这些研究的结果将为该领域提供基础。
基于基本物理原理建立针对膜蛋白稳定性和错误折叠的新策略
原则。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Janice L Robertson其他文献
Janice L Robertson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Janice L Robertson', 18)}}的其他基金
Determinants of amino acid transporter oligomerization in membranes
膜中氨基酸转运蛋白寡聚的决定因素
- 批准号:
10725968 - 财政年份:2023
- 资助金额:
$ 34.8万 - 项目类别:
2023 Mechanisms of Membrane Transport GRC & GRS
2023 GRC膜传输机制
- 批准号:
10609187 - 财政年份:2022
- 资助金额:
$ 34.8万 - 项目类别:
Driving forces of membrane protein assembly in membranes
膜蛋白在膜中组装的驱动力
- 批准号:
9156757 - 财政年份:2016
- 资助金额:
$ 34.8万 - 项目类别:
Driving forces of membrane protein assembly in membranes
膜蛋白在膜中组装的驱动力
- 批准号:
9324291 - 财政年份:2016
- 资助金额:
$ 34.8万 - 项目类别:
Driving forces of membrane protein assembly in membranes
膜蛋白在膜中组装的驱动力
- 批准号:
10797800 - 财政年份:2016
- 资助金额:
$ 34.8万 - 项目类别:
Driving forces of membrane protein assembly in membranes
膜蛋白在膜中组装的驱动力
- 批准号:
10298719 - 财政年份:2016
- 资助金额:
$ 34.8万 - 项目类别:
Driving forces of membrane protein assembly in membranes
膜蛋白在膜中组装的驱动力
- 批准号:
10698053 - 财政年份:2016
- 资助金额:
$ 34.8万 - 项目类别:
Reversible dimerization of a CLC transporter: A model for membrane protein foldin
CLC 转运蛋白的可逆二聚化:膜蛋白折叠模型
- 批准号:
8721977 - 财政年份:2012
- 资助金额:
$ 34.8万 - 项目类别:
Reversible dimerization of a CLC transporter: A model for membrane protein foldin
CLC 转运蛋白的可逆二聚化:膜蛋白折叠模型
- 批准号:
8278841 - 财政年份:2012
- 资助金额:
$ 34.8万 - 项目类别:
Reversible dimerization of a CLC transporter: A model for membrane protein foldin
CLC 转运蛋白的可逆二聚化:膜蛋白折叠模型
- 批准号:
8714314 - 财政年份:2012
- 资助金额:
$ 34.8万 - 项目类别:
相似国自然基金
利用分子装订二硫键新策略优化改造α-芋螺毒素的研究
- 批准号:82104024
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
CST蛋白复合体在端粒复制中对端粒酶移除与C链填补调控的分子机制研究
- 批准号:31900521
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Wdr47蛋白在神经元极化中的功能及作用机理的研究
- 批准号:31900503
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
ID1 (Inhibitor of DNA binding 1) 在口蹄疫病毒感染中作用机制的研究
- 批准号:31672538
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
High-throughput thermodynamic and kinetic measurements for variant effects prediction in a major protein superfamily
用于预测主要蛋白质超家族变异效应的高通量热力学和动力学测量
- 批准号:
10752370 - 财政年份:2023
- 资助金额:
$ 34.8万 - 项目类别:
Large-scale compatibility assessments between ACE2 proteins and diverse sarbecovirus spikes
ACE2 蛋白和多种 sarbecovirus 尖峰之间的大规模兼容性评估
- 批准号:
10722852 - 财政年份:2023
- 资助金额:
$ 34.8万 - 项目类别:
Role of Borrelia Lpt Homologs in Surface Lipoprotein Secretion
疏螺旋体 Lpt 同源物在表面脂蛋白分泌中的作用
- 批准号:
10742481 - 财政年份:2023
- 资助金额:
$ 34.8万 - 项目类别:
Mechanisms of Action of Natural Genetic Variation
自然遗传变异的作用机制
- 批准号:
10587460 - 财政年份:2023
- 资助金额:
$ 34.8万 - 项目类别: