Quantitative high-throughput methods for antibody fragment optimization and discovery
用于抗体片段优化和发现的定量高通量方法
基本信息
- 批准号:10454415
- 负责人:
- 金额:$ 85.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:2019-nCoVAddressAffinityAmino Acid SequenceAmino AcidsAntibodiesAntibody RepertoireAutomationAutomobile DrivingBindingBinding ProteinsBiochemicalBiological AssayBiophysicsCOVID-19CellsChIP-seqClinicalColorDNA biosynthesisDNA sequencingDataData SetDetectionDevelopmentDiseaseEcosystemEvaluationExhibitsFluorescenceGenerationsGenesGenetic TranscriptionHumanHuman ResourcesHybridomasImageImmobilizationImmunoglobulin FragmentsIn SituIn VitroIndividualIndustryInfrastructureIntellectual PropertyLaboratory ProceduresLeadLengthLibrariesLigandsLiquid substanceMalignant NeoplasmsMapsMeasurementMeasuresMethodsMolecularMonoclonal AntibodiesMutationMutation AnalysisPeptidesPhage DisplayPharmaceutical PreparationsPhaseProcessPropertyProtein ArrayProtein Binding DomainProtein EngineeringProtein MicrochipsProteinsProtocols documentationRandomizedReagentReportingRunawaySARS-CoV-2 inhibitorSpecificityTechnologyTherapeuticTherapeutic antibodiesTimeTransgenic AnimalsTranslationsVariantViralWorkYeastsantigen bindingbasecancer immunotherapycellular imagingclinically relevantcombinatorialdeep learningdeep learning modeldesignfightinghands on researchhigh throughput analysisimprovedinstrumentinstrumentationnanobodiesnovelnovel therapeuticsprogrammed cell death ligand 1prospectiveprotein expressionprotein functionreceptor bindingscaffoldside effectsingle cell analysissuccesstherapeutic development
项目摘要
Abstract
Monoclonal antibodies and antibody fragments are an important class of therapeutics comprising a $150B
industry. However, methods for discovering and optimizing antibodies to have desired affinity are generally
laborious laboratory procedures that require months of hands-on research performed by highly skilled
personnel (e.g. phage display, hybridoma, single cell). Additionally, the selection of leads to move forward in
the therapeutic development pipeline often must be made with limited information that does not necessarily
correspond to quantitative binding affinity. To address these challenges, Protillion has commercialized Prot-
MaP, a platform for measuring quantitative protein binding across large libraries of 105 to 109 variants on
automated instrumentation, with a time-to-result of approximately 2 days. We achieve this by generating
immobilized proteins directly on Illumina DNA sequencing flow cells through a process of in-situ transcription
and translation. This platform allows for direct, quantitative measurements of fluorescent antigen binding to
entire protein libraries at unprecedented scale—a scale that is finally a match for the sparseness of protein
function in amino acid mutation space. In our Phase I period, we adapted Prot-MaP to display VHHs
(nanobodies) capable of binding the SARS-CoV-2 spike (S1) receptor binding domain (RBD) protein. Our
multi-step optimization first comprehensively identified “beneficial” mutations, which were then combined into a
second combinatorial library. This strategy identified tens of thousands of protein variants with affinity superior
to wild type, with the best exhibiting the highest reported binding affinity for a VHH to this target, a 100-fold
improvement from the starting point. We also developed a strategy to humanize this nanobody, producing a
near-fully-human sequence that maintained high affinity. In Phase II, we will first improve automation and
commercial scalability of our instrumentation, and develop deep learning models for library design and
selection of therapeutic leads. We will next optimize other SARS-CoV-2 S1 RBD-binding nanobodies, as well
as nanobodies capable of binding PD-L1, a target relevant to cancer immunotherapy. We will develop a
universally applicable pipeline for identifying high-affinity, humanized, clinically-relevant VHH reagents. We will
also extend our display capabilities to larger, scFv domains, and carry out scFv affinity optimization against two
separate target ligands, including SARS-CoV-2 S1 RBD. Finally, we will adapt our methods to display up to 109
distinct protein variants on a NovaSeq sequencing chip, a scale sufficient to identify binders de novo from
naïve humanized VHH libraries. The activities outlined in this proposal will enable display multiple types of
antibody fragments, optimize affinity and humanize their sequences, and clearly define the landscape of
functional protein sequences. The capability of de novo discovery of new binders from untargeted libraries will
make the Protillion platform a vertically integrated “one stop shop” allowing both identification of “hits” from
untargeted libraries, as well as detailed mutational analysis and optimization of these variants.
抽象的
单克隆抗体和抗体片段是一类重要的治疗,汇编了$ 150B
行业。但是,发现和优化具有所需亲和力的抗体的方法通常是
实验室程序需要数月的动手研究
人员(例如噬菌体显示,杂交瘤,单细胞)。此外,选择线索前进
通常必须使用有限的信息来制作治疗开发管道
对应于定量结合亲和力。为了应对这些挑战,普利利已经商业化了
MAP,一个用于测量105至109个变体的大型文库中定量蛋白结合的平台
自动化仪器,大约2天的时间时间。我们通过产生
通过原位转录的过程,直接在Illumina DNA测序流中直接在Illumina DNA测序流中
和翻译。该平台允许对荧光抗原结合的直接定量测量
整个蛋白质文库以前所未有的规模 - 最终与蛋白质稀疏相匹配
在氨基酸突变空间中的功能。在我们的第一阶段时期,我们调整了Prot-Map以显示VHHS
(纳米化)能够结合SARS-COV-2尖峰(S1)受体结合结构域(RBD)蛋白。我们的
多步优化首先全面鉴定出“有益”突变,然后将其合并为
第二组合库。该策略确定了数以万计的蛋白质变体具有优势
对野生型,最好的vHH对此目标表现出最高的结合亲和力,100倍
起点的改进。我们还制定了一种人性化这种纳米僵局的策略,产生了
保持高亲和力的近乎人类序列。在第二阶段,我们将首先改善自动化和
我们的仪器的商业可扩展性,并为图书馆设计开发深度学习模型和
选择治疗铅。接下来,我们还将优化其他SARS-COV-2 S1 RBD结合纳米组合
作为能够结合PD-L1的纳米剂,与癌症免疫疗法相关的靶标。我们将发展一个
普遍适用的管道,用于识别高亲和力,人源化的临床含量VHH试剂。我们将
还将我们的显示功能扩展到较大的SCFV域,并对两个
单独的靶配体,包括SARS-COV-2 S1 RBD。最后,我们将调整我们的方法最多显示109
Novaseq测序芯片上的独特蛋白质变体,这是一个足以识别从头开始的量表
幼稚的人源化VHH图书馆。该提案中概述的活动将使显示多种类型的
抗体片段,优化亲和力并使其序列人性化,并清楚地定义了
功能蛋白序列。从从头开始发现的新粘合剂的能力将
使Protillion平台成为垂直集成的“一站式商店”,允许从
未定位的库,以及这些变体的详细突变分析和优化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Curtis Layton其他文献
Curtis Layton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Curtis Layton', 18)}}的其他基金
Quantitative high-throughput methods for antibody fragment optimization and discovery
用于抗体片段优化和发现的定量高通量方法
- 批准号:
10325926 - 财政年份:2020
- 资助金额:
$ 85.53万 - 项目类别:
Large-Scale, Quantitative Protein Affinity Assays on a High-Throughput DNA Sequencing Chip
在高通量 DNA 测序芯片上进行大规模定量蛋白质亲和力测定
- 批准号:
10007027 - 财政年份:2020
- 资助金额:
$ 85.53万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Emerging mechanisms of viral gene regulation from battles between host and SARS-CoV-2
宿主与 SARS-CoV-2 之间的战斗中病毒基因调控的新机制
- 批准号:
10725416 - 财政年份:2023
- 资助金额:
$ 85.53万 - 项目类别:
Vagal airway sensory nerve activation by beta-coronavirus spike protein
β-冠状病毒刺突蛋白激活迷走神经气道感觉神经
- 批准号:
10748485 - 财政年份:2023
- 资助金额:
$ 85.53万 - 项目类别:
Understanding antibody responses and defining correlates of protection for endemic and pandemic coronavirus strains
了解抗体反应并定义地方性和大流行性冠状病毒株保护的相关性
- 批准号:
10549479 - 财政年份:2023
- 资助金额:
$ 85.53万 - 项目类别:
GMP manufacturing and IND Filing of IN-002, a potent inhaled muco-trapping antibody therapy for Respiratory Syncytial Virus
IN-002 的 GMP 生产和 IND 备案,这是一种针对呼吸道合胞病毒的有效吸入粘液捕获抗体疗法
- 批准号:
10761398 - 财政年份:2023
- 资助金额:
$ 85.53万 - 项目类别:
De novo design of a generalizable protein biosensor platform for point-of-care testing
用于即时测试的通用蛋白质生物传感器平台的从头设计
- 批准号:
10836196 - 财政年份:2023
- 资助金额:
$ 85.53万 - 项目类别: