Developing statistical image analysis tools for non-invasive monitoring of anemia in low birth weight infants
开发统计图像分析工具,用于低出生体重儿贫血的无创监测
基本信息
- 批准号:10452686
- 负责人:
- 金额:$ 53.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdultAgreementAlgorithmic AnalysisAlgorithmsAnemiaBedsBehaviorBirth WeightBloodBlood specimenCharacteristicsClinicalClinical DataClinical Laboratory Improvement AmendmentsColorCommunicationComplementComplete Blood CountComplexContinuity of Patient CareDataData AnalysesDevicesDiagnosisDimensionsEnsureGoalsGoldHemoglobinHemoglobin concentration resultHemorrhageHeterogeneityHybridsImageImage AnalysisInfantInflammatoryInflammatory Bowel DiseasesKnowledgeLaboratoriesLeadLeast-Squares AnalysisLinear RegressionsLongitudinal StudiesLow Birth Weight InfantMeasurementMetadataMethodsModalityModelingMonitorNatureNecrotizing EnterocolitisNeonatal Intensive Care UnitsPainPallorPatientsPatternPerformancePhysiciansPhysiologicalPopulationPremature BirthPrincipal Component AnalysisProceduresRecording of previous eventsReportingResearch Project GrantsRiskScreening procedureSourceStructureStructure of nail of fingerSubgroupTestingTimeTrainingVenous blood samplingVery Low Birth Weight Infantbaseclinical decision-makingdesigndiagnostic toolhigh dimensionalityimprovedinfant monitoringintestinal injurylearning strategyneurodevelopmentnon-invasive imagingnon-invasive monitornoninvasive diagnosisnovelpostnatalpostnatal periodprediction algorithmprematurerecruitresponsesmartphone Applicationstatistical learningtoolunsupervised learninguser friendly softwareuser-friendly
项目摘要
Project Summary
Our proposal is motivated by the need to develop non-invasive tools for monitoring anemia in very low birth
weight (VLBW; birth weight < 1,500 grams) and reduce the number of routine painful, invasive blood sampling
procedures (phlebotomy) that may alter infant neurodevelopment and behavior. Recently, a new smartphone
application [Mannino et al., Nature Communications, 9, 4924 (2018)] that collects and analyzes clinical pallor in
patient-sourced fingernail photos and image metadata has been developed to predict hemoglobin levels. The
app uses a robust multi-linear regression model that incorporates summary color intensity values (average
across pixels) of fingernail photos well as the image metadata generated by the device capturing the image to
predict patient's hemoglobin level. While the current app algorithm is simple and easy to implement, there are
notable limitations. First, it does not fully leverage the rich spatial information available in fingernail photos by
calculating a simple average value. Second, the current algorithm is trained using only adults, whose clinical
characteristics are vastly different from infants. The 95% limit of agreement between the app-predicted and blood
sample-based hemoglobin level for adults is reported as 2.4 g/dL, which is higher than the Clinical Laboratory
Improvement Amendments specification variance of 1.0 g/dL, and will likely increase in VLBW infants given their
tiny, non-specific fingernail beds. Such strict error requirements and heterogeneity in populations demand more
accurate and tailored algorithms than what the current app employs. Lastly, a framework for applying the app to
minimize blood draws across the longitudinal care continuum for VLBW infants is currently lacking.
With these considerations, we propose (Aim 1) to develop a new image analysis algorithm (IAA) that produces
non-invasive, accurate and stable prediction of hemoglobin level. The IAA will be based on a novel principal
component analysis method that provides a non-parametric and parsimonious means to jointly model high-
dimensional photos and image metadata, while fully leveraging their spatial structures and co-varying patterns.
We will also consider a new partial least squares approach as an alternative method. We will train and validate
the IAA based on adult data as well as VLBW infant data. In Aim 2, we will develop a new clustering method to
study sub-population structures of fingernail photos and image metadata and study their relationships with the
underlying physiological mechanisms of anemia. This approach will allow us to formulate a non-invasive image-
based screening tool by identifying clusters of VLBW infants with high anemia risk. In Aim 3, we will develop
data-driven tools that leverage longitudinal, patient-level clinical data and IAA predictions to achieve the
overarching clinical goal of minimizing the number of blood draws in VLBW infants throughout the care
continuum. Our proposal will use the data of VLBW infants monitored at three level III neonatal intensive care
units in Atlanta. The proposed methods are generally applicable to a wide variety of settings with diverse and
complex modalities of clinical data.
项目概要
我们的提议的动机是需要开发非侵入性工具来监测极低出生的贫血症
体重(VLBW;出生体重 < 1,500 克)并减少常规痛苦的侵入性血液采样次数
可能改变婴儿神经发育和行为的手术(放血术)。最近,新推出的智能手机
应用程序 [Mannino et al., Nature Communications, 9, 4924 (2018)] 收集并分析临床苍白
患者来源的指甲照片和图像元数据已被开发用于预测血红蛋白水平。这
应用程序使用强大的多线性回归模型,其中包含摘要颜色强度值(平均
指甲照片的跨像素)以及捕获图像的设备生成的图像元数据
预测患者的血红蛋白水平。虽然当前的应用程序算法简单且易于实现,但有
显着的局限性。首先,它没有充分利用指甲照片中丰富的空间信息
计算简单平均值。其次,当前的算法仅使用成年人进行训练,其临床
特征与婴儿有很大不同。应用程序预测与血液之间的一致性上限为 95%
据报告,成人样本血红蛋白水平为 2.4 g/dL,高于临床实验室
改进修正案规格方差为 1.0 g/dL,考虑到 VLBW 婴儿的出生率,可能会增加
微小的、非特定的指甲床。如此严格的误差要求和群体的异质性要求更多
比当前应用程序使用的算法更准确且定制的算法。最后,应用程序的框架
目前缺乏在极低出生体重婴儿的纵向护理连续过程中最大限度地减少抽血的方法。
考虑到这些因素,我们建议(目标 1)开发一种新的图像分析算法(IAA),该算法产生
无创、准确、稳定地预测血红蛋白水平。 IAA 将基于一个新颖的原则
组件分析方法提供了一种非参数和简约的方法来联合建模高
三维照片和图像元数据,同时充分利用它们的空间结构和共变模式。
我们还将考虑新的偏最小二乘法作为替代方法。我们将进行训练和验证
IAA 基于成人数据以及 VLBW 婴儿数据。在目标 2 中,我们将开发一种新的聚类方法
研究指甲照片和图像元数据的亚群结构,并研究它们与
贫血的潜在生理机制。这种方法将使我们能够制定非侵入性图像-
基于筛查工具,通过识别具有高贫血风险的极低出生体重婴儿群体。在目标 3 中,我们将开发
数据驱动的工具,利用纵向、患者级别的临床数据和 IAA 预测来实现
总体临床目标是在整个护理过程中尽量减少 VLBW 婴儿的抽血次数
连续体。我们的提案将使用在三个三级新生儿重症监护室监测的极低出生体重婴儿的数据
亚特兰大的单位。所提出的方法通常适用于具有不同和不同特征的各种环境。
临床数据的复杂模式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
AMITA K. MANATUNGA其他文献
AMITA K. MANATUNGA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('AMITA K. MANATUNGA', 18)}}的其他基金
Developing statistical image analysis tools for non-invasive monitoring of anemia in low birth weight infants
开发统计图像分析工具,用于低出生体重儿贫血的无创监测
- 批准号:
10279575 - 财政年份:2021
- 资助金额:
$ 53.25万 - 项目类别:
Developing statistical image analysis tools for non-invasive monitoring of anemia in low birth weight infants
开发统计图像分析工具,用于低出生体重儿贫血的无创监测
- 批准号:
10681413 - 财政年份:2021
- 资助金额:
$ 53.25万 - 项目类别:
Development and Assessment of Decision Supporting System for Renal studies
肾脏研究决策支持系统的开发和评估
- 批准号:
9765306 - 财政年份:2016
- 资助金额:
$ 53.25万 - 项目类别:
Method Development of Agreement Measures and Applications in Mental Health
协议措施的方法开发及其在心理健康中的应用
- 批准号:
7599207 - 财政年份:2008
- 资助金额:
$ 53.25万 - 项目类别:
Method Development of Agreement Measures and Applications in Mental Health
协议措施的方法开发及其在心理健康中的应用
- 批准号:
7792338 - 财政年份:2008
- 资助金额:
$ 53.25万 - 项目类别:
Analytic Methods:Enviornmental/Reproductive Epidemiology
分析方法:环境/生殖流行病学
- 批准号:
6674280 - 财政年份:2003
- 资助金额:
$ 53.25万 - 项目类别:
Analytic Methods:Enviornmental/Reproductive Epidemiology
分析方法:环境/生殖流行病学
- 批准号:
7056118 - 财政年份:2003
- 资助金额:
$ 53.25万 - 项目类别:
Analytic Methods:Enviornmental/Reproductive Epidemiology
分析方法:环境/生殖流行病学
- 批准号:
6889307 - 财政年份:2003
- 资助金额:
$ 53.25万 - 项目类别:
Analytic Methods:Enviornmental/Reproductive Epidemiology
分析方法:环境/生殖流行病学
- 批准号:
6785257 - 财政年份:2003
- 资助金额:
$ 53.25万 - 项目类别:
STATISTICAL METHODS FOR SURVIVAL DATA VIA FRAILTY MODELS
通过衰弱模型进行生存数据的统计方法
- 批准号:
2872693 - 财政年份:1996
- 资助金额:
$ 53.25万 - 项目类别:
相似国自然基金
单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
- 批准号:82373465
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
- 批准号:82300208
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
- 批准号:82372499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 53.25万 - 项目类别:
Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
- 批准号:
10677169 - 财政年份:2023
- 资助金额:
$ 53.25万 - 项目类别:
Label-free, live-cell classification of neural stem cell activation state and dynamics
神经干细胞激活状态和动力学的无标记活细胞分类
- 批准号:
10863309 - 财政年份:2023
- 资助金额:
$ 53.25万 - 项目类别:
Environmental Exposures & Sleep in the Nurses' Health Study 3
环境暴露
- 批准号:
10677271 - 财政年份:2023
- 资助金额:
$ 53.25万 - 项目类别:
Spinal Cord Innovation in Pediatrics to Treat Cerebral Palsy (SCiP Clinical Study)
儿科脊髓创新治疗脑瘫(SCiP 临床研究)
- 批准号:
10760810 - 财政年份:2023
- 资助金额:
$ 53.25万 - 项目类别: