Microscopic Robot-Assisted Axon Regrowth for Rapid Repair of Peripheral Nerve Injuries
显微机器人辅助轴突再生快速修复周围神经损伤
基本信息
- 批准号:10453290
- 负责人:
- 金额:$ 23.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAdoptedArchitectureAxonBiomimeticsBioreactorsCell Culture TechniquesCellsCharacteristicsChemicalsClinicalComplexDefectDevelopmentDistalElectrophysiology (science)EnvironmentEuropeEyeFutureGaitGenerationsGoalsGrowthHealthHydrogelsImplantIn VitroInjuryLegLengthLocomotionMeasuresMechanicsMedicalMedicineMicrofabricationMicroscopicModelingMorphologyMotionMuscleMuscle functionNatural regenerationNerveNerve FibersNerve TissueNeuritesNeuromuscular JunctionNeuronsOperative Surgical ProceduresOptic NerveOutcomePatient-Focused OutcomesPatientsPatternPeripheral Nervous SystemPeripheral nerve injuryPhysiologic pulsePositioning AttributeProtocols documentationRaceRecovery of FunctionResearchRobotRoboticsRoleSeriesShapesShoulderSideSiteSolid NeoplasmSomatotypeSpeedStretchingSurfaceSynapsesTechnologyTestingTimeTissue ModelTissuesUnited StatesWalkingarmaxon growthaxon injuryaxon regenerationclinical applicationdesignfunctional outcomesfunctional restorationhealingimplantationimprovedin vivoinjury and repairmicrorobotnanofabricationnerve damagenerve injurynerve repairneuromuscularneurosurgerynew technologynovel strategiesperipheral nerve repairreconstructionregenerativereinnervationrelating to nervous systemrepair strategyrepairedrobot assistancestemsuccess
项目摘要
PROJECT SUMMARY
Functional recovery following peripheral nerve injury (PNI) only occurs in about half of all cases, even after state
of the art surgical reconstruction. Generally, poor functional outcomes stem from the inability of current repair
strategies to overcome lengthy regenerative distances. When damaged, axons attempt to reform lost
connections by growing from the proximal side of the injury towards the distal nerve target. Under natural
regenerative conditions, axons grow at a rate of roughly 1 mm/day, which is often too slow to reach distal targets
before regenerative conditions degrade. However, when pulled, axons can grow at least 10x faster. Indeed,
stretch growth is a mechanism both naturally used during development and routinely exploited by macroscale
mechanobioreactors to produce elongated axon tracks for surgical implantation. These characteristics show that
if stretch growth can be adequately controlled, it could enable rapid repair of extremely long neural defects that
would otherwise be impossible to heal. The result would be a paradigm shifting technology for PNI that
dramatically improves patient outcomes. While the feasibility of stretch growth is well established, the key
challenge for adopting it as a clinical solution to PNI is implementing tension on an axon at the injury site in a
way that can tow the neurite to its distal target. Remarkably, recent advances in microfabrication have produced
a new technology capable of performing this difficult task: microscopic robots. These machines can operate fully
autonomously, supply force, take discrete steps and are small enough to directly apply tension to an axon from
within a nerve fiber. Thus, microscopic robots provide a remarkable opportunity to reimagine PNI repair: if
appropriately developed, they could be implanted, attach to axons, and pull them to the distal target, rewiring the
lost connection by application of force. Here we propose developing a new breed of microrobots that can heal
damaged axons by literally pulling them where they need to go. As the first steps towards this goal, we will
systematically accomplish two key objectives: (1) We will fabricate a new generation of microrobots with body
types and locomotion strategies optimized for navigating in tissue. We will study the role of shape, leg position,
gait pattern, and chemical functionalization of the robot's surface to optimize machines for reliable motion in the
body at sufficient rates to support stretch growth. (2) We will apply these optimized robots to “stretch-grow” axons
ex vivo, within biomimetic hydrogels and then within excised nerve segments. We will demonstrate that the robot
can supply sufficient tension to trigger axon stretch growth, that they speed up axon growth enough to have
major clinical impact, and that the resulting axons are healthy, capable of transmitting electrical pulses, and
capable of forming neuromuscular junctions. Combined, these results will provide proof of concept for a radically
new approach to PNI repair, and an outstanding “first indication” of microrobot technology in a clinical application.
项目摘要
外周神经损伤后的功能恢复(PNI)仅发生在所有情况的一半,即使在状态之后
通常,由于目前的维修无法进行功能不佳的结果
克服冗长再生距离的策略。当损坏时,轴突试图丢失
通过从损伤的近端向远端神经靶标生长来连接。在自然之下
再生条件,轴突以大约1毫米/天的速度生长,这通常太慢,无法达到不同的目标
在再生条件下降之前。但是,当拉动时,轴突至少可以更快地生长10倍。的确,
伸展生长是一种在开发过程中自然使用的机制,并且经常被宏观探索
机器人反应器产生细长的轴突轨道进行手术植入。这些特征表明
如果可以充分控制拉伸生长,则可以快速修复极长的神经缺陷
否则将无法治愈。结果将是PNI的范式转移技术
动态改善患者的预后。虽然伸展增长的可行性已经很好,但关键
采用它作为PNI的临床解决方案的挑战是在伤害部位的轴突上实现张力
可以将神经蛋白拖到不同目标的方式。值得注意的是,微加工的最新进展已产生
一种能够执行这项艰巨任务的新技术:微观机器人。这些机器可以完全运行
自主,供应力,采取离散步骤并且足够小,可以直接在轴突上施加张力
在神经纤维中。这是微观机器人为重新想象PNI维修提供了一个了不起的机会:如果
适当地开发,可以植入它们,附着在轴突上,并将其拉到不同的目标,重新布线
通过施加武力而失去连接。在这里,我们建议开发一种可以治愈的新型微型机器人
从字面上将它们拉到需要去的地方来损坏轴突。作为实现这一目标的第一步,我们将
系统地实现了两个关键目标:(1)我们将与身体造成新一代的微型机器人
针对组织导航优化的类型和运动策略。我们将研究形状,腿部位置的作用,
步态模式和机器人表面的化学功能化,以优化机器以在
身体以足够的速度支持扩展生长。 (2)我们将将这些优化的机器人应用于“拉伸”轴突
离体,在仿生水凝胶中,然后在极好的神经段内。我们将证明机器人
可以提供足够的张力来触发轴突拉伸生长,使它们加快轴突的生长足以具有
主要的临床影响,所产生的轴突健康,能够传输电脉冲,并且
能够形成神经肌肉连接。结合在一起,这些结果将为彻底提供概念证明
PNI维修的新方法,以及临床应用中微型机器人技术的出色“第一指示”。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marc Miskin其他文献
Marc Miskin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Optimization of electromechanical monitoring of engineered heart tissues
工程心脏组织机电监测的优化
- 批准号:
10673513 - 财政年份:2023
- 资助金额:
$ 23.72万 - 项目类别:
Engineering Human Organizer To Study Left-Right Symmetry Breaking
工程人类组织者研究左右对称性破缺
- 批准号:
10667938 - 财政年份:2023
- 资助金额:
$ 23.72万 - 项目类别:
Unlocking whole brain, layer-specific functional connectivity with 3D VAPER fMRI
通过 3D VAPER fMRI 解锁全脑、特定层的功能连接
- 批准号:
10643636 - 财政年份:2023
- 资助金额:
$ 23.72万 - 项目类别:
Commercial translation of high-density carbon fiber electrode arrays for multi-modal analysis of neural microcircuits
用于神经微电路多模态分析的高密度碳纤维电极阵列的商业转化
- 批准号:
10761217 - 财政年份:2023
- 资助金额:
$ 23.72万 - 项目类别:
Morphologic and Kinematic Adaptations of the Subtalar Joint after Ankle Fusion Surgery in Patients with Varus-type Ankle Osteoarthritis
内翻型踝骨关节炎患者踝关节融合手术后距下关节的形态和运动学适应
- 批准号:
10725811 - 财政年份:2023
- 资助金额:
$ 23.72万 - 项目类别: