Regulation of HIV latency by microglial-neuronal interactions
小胶质细胞-神经元相互作用对 HIV 潜伏期的调节
基本信息
- 批准号:10450662
- 负责人:
- 金额:$ 78.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalBiological ModelsBrainCRISPR/Cas technologyCX3CL1 geneCellsCerebrumCoculture TechniquesCollaborationsCommunicationDefectDevelopmentDrug abuseDrug usageEffector CellFractalkineGABA ReceptorGeneticGenetic TranscriptionGlutamate ReceptorHIVHIV InfectionsHIV SeropositivityHumanImaging technologyIndividualInfectionInflammationInflammation MediatorsInflammatoryInflammatory ResponseInjuryInvestigationLaboratoriesLeadLibrariesMediatingMemoryMethamphetamineMicrogliaModelingMolecular BiologyMorbidity - disease rateMutationNatural ProductsNerve DegenerationNeurobiologyNeurocognitiveNeurogliaNeuronsOrganoidsPathway interactionsPatientsPattern recognition receptorPharmaceutical PreparationsPharmacologyProductionPurinoceptorRattusReceptor GeneReceptor SignalingRecoveryRegulationRestRiskRoleSignal PathwaySignal TransductionStressSymptomsSystemT-LymphocyteTestingTherapeuticUnited StatesViralViral ProteinsVirusantiretroviral therapycell transformationdesigndopaminergic neurondrug of abuseexperimental studygamma-Aminobutyric Acidgenome editinginduced pluripotent stem cellinhibitorknock-downmethamphetamine effectmethamphetamine exposuremortalitymultidisciplinaryneurocognitive disorderneurotoxicneurotransmissionnovelprotective effectreceptorreconstitutionresponsesmall hairpin RNAsubstance usetranscriptome sequencing
项目摘要
Summary
Over 40% of HIV-positive individuals in the United States engage in substance use. This
not only represents a major cause of enhanced morbidity and mortality, but also is associated
with increased risks of neurocognitive disorders, such as HAND. Neurons possess refined
systems for maintaining constant communication with glia through propagation of “Off” and “On”
signals controlling microglial activation states. Using HIV latency models in immortalized human
microglial cells (hµglia/HIV), we have shown previously that cellular activation and inflammatory
responses induce HIV production. Remarkably, co-culture of productively infected microglia with
an excess of healthy neurons leads to viral silencing. We have also shown that hµglia/HIV cells
can migrate into brain organoids where they become silenced. However, damaging neurons with
a variety of agents, including methamphetamine (METH), a frequently-used abuse substance
among HIV-infected individuals, produce reactivation signals for HIV, and this initiates a cycle of
microglial activation and further neuronal damage. This cycle of shutdown and reactivation seems
to parallel the M1 to M2 transition model of microglial cells, much as HIV latency in T cells is a
product of the natural transition of effector cells to resting memory cells. In this proposal, we seek
to define the key signals mediating the cycle of viral silencing and reactivation in microglial cells
by neurons in the context of iPSC-derived cerebral organoids. This multidisciplinary investigation
is designed as a close collaboration between the laboratories of Dr. Jonathan Karn (CWRU, HIV
molecular biology), Dr. Anthony Wynshaw-Boris (CWRU, iPSC cells, brain organoids), Dr. Kurt
Hauser (VCU, neurobiology and drug abuse), and Dr. Pamela Knapp (VCU, brain organoids). To
avoid the limitations of working with transformed cells, we have recently initiated experiments
using co-cultures between iPSC-derived cerebral organoids and microglia. Using co-cultures
between iPSC-derived cerebral organoids and microglia, we will thoroughly test the hypothesis
that the exaggerated responses of HIV-infected microglia to neuronal damage leads to enhanced
neurodegeneration. We will also test the hypothesis that exposure to METH, given this
background of faulty microglia-neuron crosstalk, enhances HIV replication. Using genome editing
approaches, we will identify the specific contribution of “On” and “Off” receptor systems in
controlling HIV latency in microglia, and study how METH impacts neuronal-microglial signaling
to augment HIV production. In parallel with our genetic investigations, we will also evaluate a
number of pharmacological agents against microglial receptors, HIV transcription inhibitors, and
mediators of inflammation in order to define therapeutic approaches that might be expected to
slow the development of HAND, especially in patients who abuse drugs.
概括
在美国,超过 40% 的艾滋病毒阳性者有药物滥用行为。
不仅是发病率和死亡率增加的主要原因,而且还与
神经认知障碍的风险增加,例如手部神经元。
通过传播“关”和“开”来与神经胶质细胞保持持续通信的系统
在永生化人类中使用 HIV 潜伏期模型控制小胶质细胞激活状态。
小胶质细胞(hμglia/HIV),我们之前已经证明细胞激活和炎症
值得注意的是,有效感染的小胶质细胞与艾滋病毒的共培养。
我们还发现,hμglia/HIV 细胞过多会导致病毒沉默。
可以迁移到大脑类器官中,在那里它们会变得沉默,但会损害神经元。
各种药物,包括甲基苯丙胺 (METH),一种经常使用的滥用物质
在艾滋病毒感染者中,产生艾滋病毒重新激活信号,这启动了一个循环
小胶质细胞激活和进一步的神经损伤似乎是这种关闭和重新激活的循环。
与小胶质细胞的 M1 到 M2 转变模型相似,就像 T 细胞中的 HIV 潜伏期一样
在这个提议中,我们寻求效应细胞自然过渡到静息记忆细胞的产物。
定义介导小胶质细胞病毒沉默和重新激活周期的关键信号
在 iPSC 衍生的大脑类器官的背景下由神经元进行的这项多学科研究。
是 Jonathan Karn 博士(CWRU、HIV
分子生物学)、Anthony Wynshaw-Boris 博士(CWRU、iPSC 细胞、脑类器官)、Kurt 博士
Hauser(VCU,神经生物学和药物滥用)和 Pamela Knapp 博士(VCU,脑类器官)。
为了避免使用转化细胞的局限性,我们最近开始了实验
使用 iPSC 衍生的脑类器官和小胶质细胞之间的共培养。
在 iPSC 衍生的脑类器官和小胶质细胞之间,我们将彻底检验这一假设
HIV感染的小胶质细胞对神经元损伤的过度反应导致增强
鉴于此,我们还将检验接触冰毒的假设。
有缺陷的小胶质细胞-神经元串扰的背景,利用基因组编辑增强了 HIV 复制。
方法,我们将确定“开”和“关”受体系统的具体贡献
控制小胶质细胞中的 HIV 潜伏期,并研究 METH 如何影响神经元-小胶质细胞信号传导
为了增加艾滋病毒的产生,在进行基因研究的同时,我们还将评估
针对小胶质细胞受体、HIV 转录抑制剂的药物数量,以及
炎症介质以确定可能预期的治疗方法
减缓手部疾病的发展,尤其是滥用药物的患者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JONATHAN KARN其他文献
JONATHAN KARN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JONATHAN KARN', 18)}}的其他基金
The role of RNA m6A modification in the regulation of HIV latency and reactivation
RNA m6A 修饰在调节 HIV 潜伏和再激活中的作用
- 批准号:
10600078 - 财政年份:2022
- 资助金额:
$ 78.81万 - 项目类别:
The role of RNA m6A modification in the regulation of HIV latency and reactivation
RNA m6A 修饰在调节 HIV 潜伏和再激活中的作用
- 批准号:
10461499 - 财政年份:2022
- 资助金额:
$ 78.81万 - 项目类别:
Research Support Core B: Primary Cell, Biomimetic, and iPSC-derived Cell Models
研究支持核心 B:原代细胞、仿生和 iPSC 衍生细胞模型
- 批准号:
10304584 - 财政年份:2021
- 资助金额:
$ 78.81万 - 项目类别:
Research Support Core B: Primary Cell, Biomimetic, and iPSC-derived Cell Models
研究支持核心 B:原代细胞、仿生和 iPSC 衍生细胞模型
- 批准号:
10632094 - 财政年份:2021
- 资助金额:
$ 78.81万 - 项目类别:
Control of P-TEFb biogenesis and HIV transcription in primary T-cells
原代 T 细胞中 P-TEFb 生物发生和 HIV 转录的控制
- 批准号:
10158438 - 财政年份:2019
- 资助金额:
$ 78.81万 - 项目类别:
Regulation of HIV latency by microglial-neuronal interactions
小胶质细胞-神经元相互作用对 HIV 潜伏期的调节
- 批准号:
10220927 - 财政年份:2019
- 资助金额:
$ 78.81万 - 项目类别:
Regulation of HIV latency by microglial-neuronal interactions
小胶质细胞-神经元相互作用对 HIV 潜伏期的调节
- 批准号:
10674037 - 财政年份:2019
- 资助金额:
$ 78.81万 - 项目类别:
Control of P-TEFb biogenesis and HIV transcription in primary T-cells
原代 T 细胞中 P-TEFb 生物发生和 HIV 转录的控制
- 批准号:
10403547 - 财政年份:2019
- 资助金额:
$ 78.81万 - 项目类别:
相似国自然基金
基于多时点脑电生物标记实现精神病发病风险的动态预测联合模型构建
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
基于微生物-肠-脑轴体外模型的潜在精神益生菌作用效果及机理研究
- 批准号:
- 批准年份:2021
- 资助金额:20 万元
- 项目类别:
基于多模态MPET脑灌注生物力学模型的出血型烟雾病发病机制研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
植物乳杆菌L168通过微生物-肠道-脑轴改善母体免疫激活的自闭症模型相关行为的机制研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:
基于生物视觉和鼠脑内嗅—海马认知机理的自主移动机器人情景认知模型研究
- 批准号:62076014
- 批准年份:2020
- 资助金额:59 万元
- 项目类别:面上项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 78.81万 - 项目类别:
Deciphering the Glycan Code in Human Alzheimer's Disease Brain
破译人类阿尔茨海默病大脑中的聚糖代码
- 批准号:
10704673 - 财政年份:2023
- 资助金额:
$ 78.81万 - 项目类别:
Bridging the gap: joint modeling of single-cell 1D and 3D genomics
弥合差距:单细胞 1D 和 3D 基因组学联合建模
- 批准号:
10572539 - 财政年份:2023
- 资助金额:
$ 78.81万 - 项目类别:
An Engineered Hydrogel Platform to Improve Neural Organoid Reproducibility for a Multi-Organoid Disease Model of 22q11.2 Deletion Syndrome
一种工程水凝胶平台,可提高 22q11.2 缺失综合征多器官疾病模型的神经类器官再现性
- 批准号:
10679749 - 财政年份:2023
- 资助金额:
$ 78.81万 - 项目类别:
A mechanistic understanding of glymphatic transport and its implications in neurodegenerative disease
对类淋巴运输的机制及其在神经退行性疾病中的影响的理解
- 批准号:
10742654 - 财政年份:2023
- 资助金额:
$ 78.81万 - 项目类别: