Matrix stiffness mediated biglycan expression in the tumor vasculature
肿瘤脉管系统中基质刚度介导的双糖链蛋白聚糖表达
基本信息
- 批准号:10450825
- 负责人:
- 金额:$ 4.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:Abnormal Endothelial CellAngiogenic SwitchAutomobile DrivingBehaviorBiochemicalBiocompatible MaterialsBiological AssayBloodBlood VesselsCell physiologyCellsCharacteristicsChemicalsCommunitiesCoupledCuesDNA MethylationDataDiseaseDrug Delivery SystemsEndothelial CellsEndotheliumEpigenetic ProcessExtracellular MatrixExtracellular Matrix ProteinsFamilyGenesGoalsGrowthHypoxiaIn VitroLeucineLinkMalignant NeoplasmsMechanicsMediatingMolecularNormal tissue morphologyNutrientOxygenPathologicPathologic NeovascularizationPathway interactionsPerfusionPermeabilityPhenotypeProcessPrognosisProteoglycanRegulationRoleSignal TransductionStructureTestingTherapeuticTissue EngineeringTissuesTransgenic MiceTumor AngiogenesisWorkangiogenesisautocrinebiglycancancer therapycell behaviorcombatcrosslinkin vivoinsightinterestmalignant breast neoplasmmechanical propertiesmechanical signalnovel strategiesoverexpressionrecruitresponsetherapeutic targettranscriptome sequencingtumortumor growthtumor microenvironmenttumor progression
项目摘要
PROJECT SUMMARY
Angiogenesis refers to the process by which new blood vessels grow from pre-existing ones. Excessive
angiogenesis is a hallmark of many cancers and contributes to cancer progression. During tumor
growth, the angiogenic switch is deregulated resulting in an abnormal vasculature characterized by
hyperpermeable, tortuous, and immature blood vessels. Consequences of the irregular tumor
vasculature include poor tumor perfusion resulting in hypoxia and hindrance to therapeutic drug
delivery. While it is well established that chemical cues are heavily involved in regulating tumor
angiogenesis, the influence of mechanical cues are becoming more apparent. Notably, the extracellular
matrix is significantly stiffer than normal tissue in many cancers, and elevated matrix stiffness has been
shown to promote angiogenesis and disrupt barrier integrity. Prior work in our lab has shown both in
vitro and in vivo that increased matrix crosslinking (resulting in a stiffer matrix) increases endothelial
sprouting and causes more permeable blood vessels to form. However, the mechanisms governing the
effects of matrix stiffness on endothelial cell function are still poorly understood. Uncovering the
mechanisms driving stiffness-mediated effects on endothelial cells is critical for developing novel
approaches to normalize tumor vasculature and promote normal vessel growth. Interestingly, our
preliminary data obtained through RNA-sequencing indicate that endothelial biglycan expression is
regulated by matrix stiffness in vitro and in vivo. Previously, biglycan has been identified as a tumor
endothelial cell marker and biglycan overexpression is correlated to poor prognosis in several cancers.
Notably, biglycan can promote angiogenesis as an autocrine agent. While it is established that biglycan
is upregulated in disease and contributes to pathological endothelial signaling and behavior, our data
indicates that ECM stiffness may drive these effects. Given these findings, we will use tailored
biomaterials, transgenic mice, and state of the art biochemical assays to investigate the hypothesis that
matrix stiffness increases cellular contractility to drive elevated endothelial biglycan expression and
promote aberrant angiogenesis and hyperpermeability. In aim 1, the molecular mechanism governing
matrix stiffness driven endothelial biglycan expression will be determined. In aim 2, the effects of matrix
stiffness-mediated endothelial biglycan expression in promoting increased angiogenesis and a
hyperpermeable phenotype will be investigated. This work will provide critical insight into how the
mechanical properties of tumors regulate the structure and integrity of vasculature and uncover
potential therapeutic targets for vasculature normalization with a focus on endothelial biglycan
regulation.
项目概要
血管生成是指新血管从已有血管生长的过程。过多的
血管生成是许多癌症的标志,并有助于癌症进展。肿瘤期间
生长过程中,血管生成开关失调,导致脉管系统异常,其特征为
通透性高、曲折且不成熟的血管。不规则肿瘤的后果
脉管系统包括肿瘤灌注不良,导致缺氧并阻碍治疗药物
送货。虽然化学信号在肿瘤调节中发挥着重要作用,这一点已得到充分证实
血管生成中,机械信号的影响变得越来越明显。值得注意的是,细胞外
在许多癌症中,基质明显比正常组织坚硬,并且基质硬度升高
显示可促进血管生成并破坏屏障完整性。我们实验室之前的工作已经表明
体外和体内增加基质交联(导致更硬的基质)增加内皮细胞
发芽并导致形成更具渗透性的血管。然而,管理机制
基质硬度对内皮细胞功能的影响仍知之甚少。揭开
驱动内皮细胞刚度介导效应的机制对于开发新的药物至关重要
使肿瘤血管系统正常化并促进正常血管生长的方法。有趣的是,我们的
通过RNA测序获得的初步数据表明内皮双糖链蛋白聚糖的表达是
体外和体内受基质硬度调节。此前,双糖链蛋白聚糖已被确定为肿瘤
内皮细胞标记物和双糖链蛋白聚糖过度表达与多种癌症的不良预后相关。
值得注意的是,双糖链蛋白聚糖可以作为自分泌剂促进血管生成。虽然已经确定 biglycan
在疾病中上调并有助于病理性内皮信号传导和行为,我们的数据
表明 ECM 刚度可能会导致这些影响。鉴于这些发现,我们将使用量身定制的
生物材料、转基因小鼠和最先进的生化测定来研究以下假设:
基质硬度增加细胞收缩性以驱动内皮双糖链蛋白聚糖表达升高
促进异常血管生成和渗透性过高。在目标1中,控制的分子机制
将确定基质硬度驱动的内皮双糖链蛋白聚糖表达。在目标 2 中,矩阵的影响
硬度介导的内皮双糖链蛋白聚糖表达促进血管生成增加
将研究高通透性表型。这项工作将为我们如何
肿瘤的机械特性调节脉管系统的结构和完整性并揭示
血管系统正常化的潜在治疗靶点,重点关注内皮双糖链蛋白聚糖
规定。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Matrix stiffness primes cells for future oxidative stress.
基质硬度为细胞未来的氧化应激做好准备。
- DOI:10.1016/j.trecan.2021.08.003
- 发表时间:2021
- 期刊:
- 影响因子:18.4
- 作者:Taufalele,PaulV;Reinhart-King,CynthiaA
- 通讯作者:Reinhart-King,CynthiaA
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Taufalele其他文献
Paul Taufalele的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul Taufalele', 18)}}的其他基金
Matrix stiffness mediated biglycan expression in the tumor vasculature
肿瘤脉管系统中基质刚度介导的双糖链蛋白聚糖表达
- 批准号:
10319916 - 财政年份:2020
- 资助金额:
$ 4.37万 - 项目类别:
相似国自然基金
线粒体应激促进肿瘤第一条新生血管(Angiogenic Switch)生成的作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
“补肺健脾活血法”调节血管生成开关抑制哮喘气道血管重塑机制研究
- 批准号:81804026
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
组织凝血因子III启动血管生成开关对丹参抑制休眠肿瘤恶变的作用机制
- 批准号:81703765
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于血管生成开关-Nrf2/ARE通路调控的促血管新生与土家医"理阴化毒"干预血管性痴呆作用机理研究
- 批准号:81473797
- 批准年份:2014
- 资助金额:72.0 万元
- 项目类别:面上项目
相似海外基金
Matrix stiffness mediated biglycan expression in the tumor vasculature
肿瘤脉管系统中基质刚度介导的双糖链蛋白聚糖表达
- 批准号:
10319916 - 财政年份:2020
- 资助金额:
$ 4.37万 - 项目类别:
The Role of Integrin Affinity Modulation during Tumor Angiogenesis
整合素亲和力调节在肿瘤血管生成过程中的作用
- 批准号:
9752370 - 财政年份:2017
- 资助金额:
$ 4.37万 - 项目类别:
CCR3: a molecular marker for neovascular AMD
CCR3:新生血管性 AMD 的分子标志物
- 批准号:
7935227 - 财政年份:2009
- 资助金额:
$ 4.37万 - 项目类别:
CCR3: a molecular marker for neovascular AMD
CCR3:新生血管性 AMD 的分子标志物
- 批准号:
7834091 - 财政年份:2009
- 资助金额:
$ 4.37万 - 项目类别:
The role of endothelial progenitor cells in tumor growth and metastasis
内皮祖细胞在肿瘤生长和转移中的作用
- 批准号:
8113675 - 财政年份:2004
- 资助金额:
$ 4.37万 - 项目类别: