Race/Ethnicity-Specific Algorithms of Chronic Stress Exposures for Preterm Birth Risk: Machine Learning Approach
针对早产风险的慢性压力暴露的种族/民族特定算法:机器学习方法
基本信息
- 批准号:10448093
- 负责人:
- 金额:$ 14.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-11 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:37 weeks gestationAdoptedAdverse effectsAlgorithmsAreaArtificial IntelligenceAttentionBehavioralBirthBirth RateBlack raceChild HealthChronicChronic stressClinicalComplementComplexComputersDataDatabasesEarly InterventionEthnic OriginExposure toFamilyFemale of child bearing ageFinancial HardshipGoalsGrantHealth PromotionHealthcareHigh PrevalenceHybridsIncidenceInfantInstructionKnowledgeLearningLinear RegressionsLinkLiteratureLogistic RegressionsMachine LearningManuscriptsMaternal and Child HealthMeasurementMeasuresMedical Care CostsMethodologyMethodsModelingMonitorNatureNot Hispanic or LatinoOutcomePatientsPatternPopulationPopulations at RiskPregnancyPregnant WomenPremature BirthPreparationPublic Health InformaticsROC CurveRaceResearch DesignRiskRisk AssessmentRisk FactorsSamplingStatistical ModelsStressStudy modelsSystemTechniquesTestingTimeTrainingVariantViolenceWomanbaseblack womenblack/white disparitycareer developmentcommunity settingdeep neural networkearly screeningethnic diversityethnic minority populationexperiencelarge scale datamachine learning algorithmmachine learning modelmaternal riskmultidimensional dataneural network algorithmnovelpeerpreventracial and ethnicracial and ethnic disparitiesrisk predictionskillssocialsociodemographicsstressortool
项目摘要
Racial/ethnic disparities in preterm birth (PTB) are persistent in the U.S., with a higher prevalence of PTB in
non-Hispanic (N-H) Black women than their N-H White counterparts. However, the underlying mechanism of
such Black-White differences is not well understood. Even extensive biomedical, behavioral, and socio-
demographic risk factors can explain only about half of PTB incidence. Chronic stress has received significant
attention as a robust predictor of PTB, particularly among racial/ethnic minority groups. Nevertheless, literature
shows inconsistent evidence on the relationships among race/ethnicity, chronic stress, and PTB, mainly
because of the complexities involved in assessing women’s chronic stress exposures. Accurate chronic stress
measures should capture the nature of stressors: cumulative, interactive, and population-specific. In this
regard, conventional statistical models (e.g., linear regression) have limited ability to model chronic stress
exposures with high precision. Thus, this study will adopt machine learning (ML), a state-of-the-art modeling
technique, to compute non-linear and synergistic relationships among chronic stressors, detect unknown
patterns, and reflect subtle differences in chronic stressors between N-H White and N-H Black women for more
accurate prediction of their PTB risk. I will develop simple, accurate, and explainable ML algorithms of chronic
stress exposures by building a hybrid algorithm specific to N-H White and N-H Black women and computing
SHAP (SHapley Additive exPlanations) values. Specifically, the hybrid algorithm will combine Multivariate
Adaptive Regression Splines (MARS) and Deep Neural Network (DNN) algorithms where MARS will select
only “important” chronic stressor variables for each race/ethnicity to serve as DNN’s input features for PTB risk
prediction. Additionally, a SHAP value for each chronic stressor in the final algorithm will quantify its degree of
contribution to the predicted PTB risk. The ML algorithms will be trained and tested on a large national
database—Pregnancy Risk Assessment Monitoring System (2012-2017)—collected by 37 U.S. states. The
study’s specific aims are to 1) compare the accuracy among logistic regression (LR) and two ML algorithms
(DNN and hybrid) of chronic stress exposures to predict PTB risk using area under the receiver operating
characteristic curve (AUC); 2) compare the accuracy between race/ethnicity-combined and race/ethnicity-
specific models within LR, DNN, and hybrid algorithms; and 3) determine the extent of the importance of
chronic stressors to the predicted PTB risk in the best-performing algorithm using regression coefficients (for
LR) or SHAP values (for ML algorithm). Career development goals are to 1) develop expertise in stress
measurement in the context of maternal and child health, 2) acquire knowledge and skills in ML and the
analysis of large-scale data, and 3) cultivate health informatics-focused manuscript and grant preparation skills
for independence. Results from this study will contribute to preventing PTB among vulnerable pregnant women
via early screening with more accurate, data-informed tools to assess these patients’ chronic stress.
在美国,早产 (PTB) 的种族/民族差异持续存在,其中 PTB 患病率较高
非西班牙裔 (N-H) 黑人女性比她们的 N-H 白人盟友然而,其根本机制。
即使是广泛的生物医学、行为和社会差异,人们也没有很好地理解这种黑人与白人的差异。
人口统计学危险因素只能解释约一半的慢性压力所致结核病发病率。
注意力作为 PTB 的有力预测因素,特别是在少数种族/族裔群体中。
关于种族/族裔、慢性压力和 PTB 之间关系的证据不一致,主要是
因为评估女性的慢性压力暴露非常复杂。
措施应抓住压力源的性质:累积性、交互性和特定人群。
传统的统计模型(例如线性回归)模拟慢性压力的能力有限
因此,本研究将采用机器学习(ML)这种最先进的建模方法。
技术,计算慢性压力源之间的非线性和协同关系,检测未知
模式,并反映了 N-H 白人和 N-H 黑人女性之间慢性压力源的微妙差异。
我将开发简单、准确且可解释的慢性病 ML 算法。
通过构建专门针对 N-H 白人和 N-H 黑人女性和计算的混合算法来缓解压力
SHAP(SHApley Additive exPlanations)值具体来说,混合算法将结合多变量。
MARS 将选择自适应回归样条 (MARS) 和深度神经网络 (DNN) 算法
每个种族/民族的唯一“重要”慢性压力源变量可作为 DNN 的 PTB 风险输入特征
此外,最终算法中每个慢性压力源的 SHAP 值将量化其程度。
机器学习算法将在大型国家/地区进行训练和测试。
数据库——妊娠风险评估监测系统(2012-2017)——由美国 37 个州收集。
研究的具体目标是 1) 比较逻辑回归 (LR) 和两种 ML 算法的准确性
慢性压力暴露(DNN 和混合),使用接收器操作下的面积来预测 PTB 风险
特征曲线(AUC);2)比较种族/民族组合和种族/民族-之间的准确性
LR、DNN 和混合算法中的特定模型;3) 确定重要性的程度
使用回归系数(对于
LR)或SHAP值(对于ML算法)职业发展目标是1)发展压力方面的专业知识。
孕产妇和儿童健康背景下的测量,2) 获得机器学习和机器学习方面的知识和技能
分析大规模数据,3) 培养以健康信息学为重点的手稿和拨款准备技能
这项研究的结果将有助于预防弱势孕妇的 PTB。
通过使用更准确、基于数据的工具进行早期筛查来评估这些患者的慢性压力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sangmi Kim其他文献
Sangmi Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sangmi Kim', 18)}}的其他基金
Race/Ethnicity-Specific Algorithms of Chronic Stress Exposures for Preterm Birth Risk: Machine Learning Approach
针对早产风险的慢性压力暴露的种族/民族特定算法:机器学习方法
- 批准号:
10620851 - 财政年份:2022
- 资助金额:
$ 14.45万 - 项目类别:
相似国自然基金
基于空间代谢流技术探究人参-远志药对通过纠偏单胺类神经递质代谢紊乱治疗阿尔茨海默病的整合作用模式
- 批准号:82304894
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
USP46通过去泛素化修饰RAP80促进同源重组修复的分子机制及其在三阴乳腺癌中的功能研究
- 批准号:82373150
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
IL-32通过FAT4介导调控Hippo/YAP信号通路在椎间盘退变中的作用及机制研究
- 批准号:82302737
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
NMN通过肠道活泼瘤胃球菌调控猪胆酸-GLP-1通路改善PCOS的机制研究
- 批准号:32300989
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
徐氏抑肝扶脾方通过ATP/P2X2-TRPV1信号通路调控肠胶质细胞自噬减轻肝郁脾虚型IBS-D神经炎症的机制研究
- 批准号:82305135
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Identifying Genetic Contributions to Adverse Drug Reactions
确定遗传因素对药物不良反应的影响
- 批准号:
10730434 - 财政年份:2023
- 资助金额:
$ 14.45万 - 项目类别:
Augmenting Pharmacogenetics with Multi-Omics Data and Techniques to Predict Adverse Drug Reactions to NSAIDs
利用多组学数据和技术增强药物遗传学,预测 NSAID 的药物不良反应
- 批准号:
10748642 - 财政年份:2023
- 资助金额:
$ 14.45万 - 项目类别:
Teratogenicity assessment of new antiviral drugs using 3D morphogenesis models
使用 3D 形态发生模型评估新型抗病毒药物的致畸性
- 批准号:
10741474 - 财政年份:2023
- 资助金额:
$ 14.45万 - 项目类别:
Predicting and Preventing Adverse Maternal and Child Outcomes of Opioid Use Disorder in Pregnancy
预测和预防妊娠期阿片类药物使用障碍的不良母婴结局
- 批准号:
10683849 - 财政年份:2023
- 资助金额:
$ 14.45万 - 项目类别:
Pharmacogenomics Workflow: Identifying Biomarkers and Treatment Options
药物基因组学工作流程:识别生物标志物和治疗方案
- 批准号:
10819933 - 财政年份:2023
- 资助金额:
$ 14.45万 - 项目类别: