A Human Organoid Model of Polycystic Kidney Disease
多囊肾病的人体类器官模型
基本信息
- 批准号:10447043
- 负责人:
- 金额:$ 35.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-15 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:ActomyosinAdhesionsAffectAnimal ModelAnimalsArchitectureBiochemicalCell AdhesionCell LineCell membraneCell modelCell surfaceCellsCiliaComplementComplexCystCystic FibrosisCystic Fibrosis Transmembrane Conductance RegulatorCytoskeletonDataDefectDiseaseEmbryoEndoplasmic ReticulumEpithelial CellsExcisionExperimental ModelsExtracellular MatrixFibrosisGenesGeneticGenetic DiseasesGenetic TranscriptionGoalsHereditary DiseaseHeterozygoteHumanInheritedIntegral Membrane ProteinInterventionKidneyKidney DiseasesKidney FailureLaboratoriesLifeLiquid substanceLysosomesMembraneModelingMolecularMusMutationMyosin ATPaseMyosin Type IINatural regenerationNatureNephronsOrganOrganoidsPKD2 proteinPathway interactionsPatientsPatternPersonsPharmaceutical PreparationsPharmacologyPhenocopyPhenotypePolycystic Kidney DiseasesProcessProteinsPublishingReceptor SignalingRenal tubule structureResearchRoleSafetySiteSourceStructureSurfaceSystemTechniquesTestingTherapeuticTherapeutic InterventionTimeTissue SampleTissuesTubeTubular formationWorkbasecell immortalizationcohortexperimental studyhuman modelhuman pluripotent stem cellhuman tissueinnovationloss of function mutationmouse modelmulticatalytic endopeptidase complexmutantnon-muscle myosinnovelpolycystic kidney disease 1 proteinprenatalpreventreceptorstem cell modelstoichiometrysuccesstargeted treatmenttherapeutic candidatetrafficking
项目摘要
A HUMAN ORGANOID MODEL OF POLYCYSTIC KIDNEY DISEASE
!
PROJECT SUMMARY
Polycystic kidney disease (PKD) is the world's most common life-threatening genetic disease and
fourth-leading cause of kidney failure, affecting approximately 12 million people worldwide. In PKD,
the normal tubular architecture of the kidneys and other organs is gradually replaced by cysts and
fibrosis. There is no cure for PKD, and candidate therapeutics are of uncertain efficacy and safety.
PKD is commonly inherited as a germline heterozygous loss-of-function mutation in PKD1 or PKD2,
encoding polycystin-1 (PC1) and polycystin-2 (PC2), respectively. These large, transmembrane
proteins form a channel-receptor complex at the primary cilium and other sites. It is not yet known
how mutations result in cyst formation from tubular epithelial cells. A major barrier to deciphering PKD
mechanistically is the lack of experimentally accessible models that faithfully recapitulate PKD-
specific cystogenesis from tubules. Primary and immortalized cell lines are heterogenous, de-
differentiated, non-human, or represent only later stages of disease, while animal models differ
substantially from humans and are challenging to decipher mechanistically. To overcome this gap,
our laboratory is pioneering the use of human pluripotent stem cells (hPSC) for modeling PKD.
hPSC represent a very early embryonic state and provide a renewable source of patient-matched
human cells for analysis and regeneration. We have established techniques to differentiate hPSC into
human kidney organoids, which are complex, multicellular structures with patterned segments that
resemble nephrons. We have further compared gene-edited and patient-derived organoids to mouse
and human tissue samples with disease to complement and validate this new system. In hPSC with
PKD mutations, we have identified several disease-relevant phenotypes, including cystogenesis from
kidney organoid tubules. The goal of this proposal is to elucidate the mechanistic determinants of
human PKD cystogenesis in kidney organoids. Based on our preliminary data, we hypothesize that
balanced expression of PC1 and PC2 regulates physical adhesion between the kidney tubule and its
microenvironment. In Aim 1, we will establish a more faithful experimental model of human PKD by
quantifying cystogenesis in heterozygous kidney organoids. In Aim 2, we will investigate how
polycystin protein levels are controlled by clarifying the mechanisms underlying PC1 loss in PKD2-/-
cells. Finally, Aim 3 will explore a novel hypothesized molecular pathway for PKD by identifying
defects in cell adhesion during cyst initiation. Key findings will be validated in primary PKD tissues
and non-organoid cells. Collectively, these studies will unveil critical molecular pathways that underlie
the enigmatic process of cyst formation, revealing new potential targets for therapeutic intervention.
多囊肾病的人体器官模型
!
项目概要
多囊肾病(PKD)是世界上最常见的危及生命的遗传性疾病,
肾衰竭的第四大原因,影响全球约 1200 万人。在公钥簿中,
肾脏和其他器官的正常管状结构逐渐被囊肿取代
纤维化。多囊肾无法治愈,候选疗法的疗效和安全性也不确定。
PKD 通常是作为 PKD1 或 PKD2 种系杂合功能丧失突变而遗传的,
分别编码多囊蛋白-1 (PC1) 和多囊蛋白-2 (PC2)。这些大的、跨膜的
蛋白质在初级纤毛和其他位点形成通道受体复合物。目前尚不清楚
突变如何导致肾小管上皮细胞形成囊肿。破译公钥簿的主要障碍
从机制上讲,缺乏可忠实重述 PKD 的实验可访问模型
来自肾小管的特异性囊肿发生。原代细胞系和永生化细胞系是异质的、去-
分化的、非人类的或仅代表疾病的后期阶段,而动物模型则不同
基本上来自人类,并且很难机械地破译。为了克服这一差距,
我们的实验室率先使用人类多能干细胞 (hPSC) 来建模 PKD。
hPSC 代表了非常早期的胚胎状态,并提供了患者匹配的可再生来源
用于分析和再生的人体细胞。我们已经建立了将 hPSC 分化为
人类肾脏类器官,是复杂的多细胞结构,具有图案化的片段
类似于肾单位。我们进一步将基因编辑和患者来源的类器官与小鼠进行了比较
以及患有疾病的人体组织样本来补充和验证这个新系统。在 hPSC 中
PKD 突变,我们已经确定了几种与疾病相关的表型,包括来自
肾类器官小管。该提案的目标是阐明机械决定因素
肾类器官中的人 PKD 囊肿发生。根据我们的初步数据,我们假设
PC1和PC2的平衡表达调节肾小管与其肾小管之间的物理粘附
微环境。在目标 1 中,我们将通过以下方式建立更忠实的人类 PKD 实验模型:
量化杂合肾类器官的囊肿发生。在目标 2 中,我们将研究如何
通过阐明 PKD2-/- 中 PC1 丢失的机制来控制多囊蛋白水平
细胞。最后,目标 3 将通过识别 PKD 来探索一种新的假设分子途径
囊肿发生过程中细胞粘附缺陷。主要发现将在原发性 PKD 组织中得到验证
和非类器官细胞。总的来说,这些研究将揭示潜在的关键分子途径
囊肿形成的神秘过程,揭示了治疗干预的新潜在目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin Solomon Freedman其他文献
Benjamin Solomon Freedman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin Solomon Freedman', 18)}}的其他基金
Utility of Human Organoids for Safety and Efficiency Evaluations of Genome Editing Therapeutics
人类类器官在基因组编辑治疗安全性和效率评估中的应用
- 批准号:
10667181 - 财政年份:2023
- 资助金额:
$ 35.3万 - 项目类别:
Improving the Safety of Genome Editing With Human Kidney Organoids
提高人肾类器官基因组编辑的安全性
- 批准号:
10335116 - 财政年份:2019
- 资助金额:
$ 35.3万 - 项目类别:
Improving the Safety of Genome Editing With Human Kidney Organoids
提高人肾类器官基因组编辑的安全性
- 批准号:
9810503 - 财政年份:2019
- 资助金额:
$ 35.3万 - 项目类别:
Improving the Safety of Genome Editing With Human Kidney Organoids
提高人肾类器官基因组编辑的安全性
- 批准号:
10407081 - 财政年份:2019
- 资助金额:
$ 35.3万 - 项目类别:
Improving the Safety of Genome Editing With Human Kidney Organoids
提高人肾类器官基因组编辑的安全性
- 批准号:
10019368 - 财政年份:2019
- 资助金额:
$ 35.3万 - 项目类别:
A Human Organoid Model of Polycystic Kidney Disease
多囊肾病的人体类器官模型
- 批准号:
10190922 - 财政年份:2018
- 资助金额:
$ 35.3万 - 项目类别:
Modeling Polycystic Kidney Disease Using Human Induced Pluripotent Stem Cells
使用人类诱导多能干细胞模拟多囊肾病
- 批准号:
8754901 - 财政年份:2014
- 资助金额:
$ 35.3万 - 项目类别:
Modeling Polycystic Kidney Disease Using Human Induced Pluripotent Stem Cells
使用人类诱导多能干细胞模拟多囊肾病
- 批准号:
8440919 - 财政年份:2011
- 资助金额:
$ 35.3万 - 项目类别:
Modeling Polycystic Kidney Disease Using Human Induced Pluripotent Stem Cells
使用人类诱导多能干细胞模拟多囊肾病
- 批准号:
8534862 - 财政年份:2011
- 资助金额:
$ 35.3万 - 项目类别:
相似国自然基金
动脉粥样硬化发生中CAPN2影响内皮粘连的机制研究
- 批准号:82000254
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
层粘连蛋白受体第272位苏氨酸影响猪瘟病毒感染的分子机制
- 批准号:31902264
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
层粘连蛋白调控巨噬细胞和脂肪基质细胞影响肥胖脂肪组织重塑的机制
- 批准号:
- 批准年份:2019
- 资助金额:300 万元
- 项目类别:
大黄-桃仁介导AhR通路影响Th17/Treg和肠道菌群平衡改善肠粘膜屏障功能防治粘连性肠梗阻的机制研究
- 批准号:81804098
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
保留双层肌膜的功能性肌肉移植中S1P/S1PR1轴调节巨噬细胞迁移及分化对移植肌肉粘连与功能的影响
- 批准号:81871787
- 批准年份:2018
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
Control of epithelial morphology and bioenergetics by Toll receptors during dynamic tissue remodeling
动态组织重塑过程中 Toll 受体对上皮形态和生物能的控制
- 批准号:
10737093 - 财政年份:2023
- 资助金额:
$ 35.3万 - 项目类别:
Physical, cellular, and molecular control of tissue fission and fusion
组织裂变和融合的物理、细胞和分子控制
- 批准号:
10724005 - 财政年份:2023
- 资助金额:
$ 35.3万 - 项目类别:
Generation of Neurons by Force-Mediated Epigenetic Mechanisms through Manipulation of Intrinsic Mechanoregulators
通过操纵内在机械调节器通过力介导的表观遗传机制产生神经元
- 批准号:
10664507 - 财政年份:2023
- 资助金额:
$ 35.3万 - 项目类别:
Mechanics of Cells & Tissues impact Chromosome Instability & Phagocytic Interactions
细胞力学
- 批准号:
10626283 - 财政年份:2023
- 资助金额:
$ 35.3万 - 项目类别:
Calpain/talin/MLCP axis in pulmonary endothelial barrier regulation
钙蛋白酶/talin/MLCP轴在肺内皮屏障调节中的作用
- 批准号:
10522290 - 财政年份:2022
- 资助金额:
$ 35.3万 - 项目类别: