Endosomal escape of lipid-based nanoparticles comprising Gaussian curvature lipids
包含高斯曲率脂质的基于脂质的纳米粒子的内体逃逸
基本信息
- 批准号:10446400
- 负责人:
- 金额:$ 39.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-10 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:AffectBiological AssayBiophysicsCOVID-19COVID-19 vaccineCell LineCell Membrane ProteinsCellsCholesterolClinicalClinical TrialsCommunicationConfocal MicroscopyCryoelectron MicroscopyCytosolDNA deliveryDataDiffuseDiseaseDrug Delivery SystemsElasticityEndocytosis PathwayEndosomesEukaryotic CellEvaluationEventEvolutionFDA approvedFlow CytometryFluorescence Resonance Energy TransferFormulationGaussian modelGene DeliveryGenerationsGenetic DiseasesGoalsHealthHumanLabelLipidsMalignant NeoplasmsMeasuresMembraneMembrane FusionMessenger RNAMicrofluidicsMicroscopicModelingModulusMolecularNucleic AcidsOrganismPathway interactionsPhasePhospholipidsProcessPropertyProteinsProton PumpRNA deliveryResearch SupportRoentgen RaysRoleRuptureSaccharomyces cerevisiaeSeriesSpectrum AnalysisStressSwellingSystemTestingTherapeuticWorkYeastsbasecell typechronic infectiondelivery vehicledesignexperimental studyfluorophoreinnovationinsightinterdisciplinary approachlipid nanoparticlemRNA deliverymembrane activitymicroscopic imagingmimeticsmodels and simulationmolecular modelingnanoparticle deliverynovel strategiesprotein expressionprotein purificationreconstitutionsimulationtherapeutic RNAunilamellar vesiclevacuolar H+-ATPasevirus envelope
项目摘要
PROJECT SUMMARY
RNA therapeutics hold great promise for the treatment of a number of diseases significantly impacting human
health, such as chronic infections, genetic disorders, certain cancers, and presently COVID-19. The leading RNA
delivery vehicles approved by the FDA, as well as being considered in several clinical trials, are non-viral lipid-
based nanoparticles (LNPs). State-of-the art LNPs comprise standard phospholipids, cholesterol, and ionizable
lipids (ILs) that get protonated in acidic conditions. Analogous to enveloped virus, LNPs hijack the endocytic
pathway to enter cells. The efficacy of RNA delivery hinges on the ability of LNPs to escape the endosome by
fusing with its membrane. However, the factors that control LNPs–endosome fusion remain largely unknown.
Enveloped viruses contain proteins that promote fusion by stabilizing the formation of highly curved membrane
pores. In LNPs, alternative strategies to bolster fusion include using lipids with non-zero spontaneous curvature
that are elusively deemed “fusogenic”. However, understanding membrane fusion requires the consideration of
membrane elasticity beyond spontaneous curvature. Specifically, the formation of a fusion pore between two
bilayers is dictated by an interplay between the bending modulus and the Gaussian curvature modulus. However,
the Gaussian modulus is rarely considered when designing “fusogenic” LNPs, even though bilayer fusion is an
occasion for which its value matters the most.
The central hypothesis of this work is that raising the Gaussian modulus of LNPs by inclusion of a new class of
lipids termed Gaussian curvature lipids (GCLs) has a dramatic effect on the ability of LNPs to fuse with
endosomal membranes. Furthermore, we conjecture that membrane fusion, as boosted by GCL integration, is
synergistically favored in living systems during active proton pumping and endosome acidification.
We combine a team of experts in RNA delivery to cells, membrane protein purification as well as experimental,
computational, and theoretical membrane elasticity to test the central hypotheses via two aims. In Aim 1 we will
establish the biophysical elastic properties of LNPs to maximize fusion with endosomes. We investigate how
fusion takes place at a microscopic level, namely deciphering if the dominant effect is the formation of fusion
pores and/or if LNPs feed lipids to endosomal membranes remodeling them and making them more prone to
rupture. In Aim 2 we investigate the impact of membrane activity and endosome acidification by measuring in
live cells RNA delivery and endosomal fusion of LNPs comprising increasing amounts of GCLs. We will also
develop endosome-mimetic vesicular systems reconstituted with endosomal membrane proton pumps (V-
ATPase) to elucidate the mechanism of LNP-endosomal membrane fusion during active proton pumping.
Our work will raise new physical insights on LNP endosomal escape and establish the desired LNP membrane
properties to boost fusion in living systems, resulting in substantially more effective RNA delivery vehicles.
项目摘要
RNA疗法对多种疾病的治疗具有很大的希望
健康,例如慢性感染,遗传疾病,某些癌症和目前的癌症。领先的RNA
FDA批准的运输车辆以及在几项临床试验中被考虑的是非病毒脂质的 -
基于纳米颗粒(LNP)。最先进的LNP包括标准磷脂,胆固醇和可离子化
在酸性条件下质子化的脂质(IL)。类似于包裹的病毒,LNP劫持了内吞
进入细胞的途径。 RNA递送的效率取决于LNP的能力逃脱内体的能力
与膜融合。然而,控制LNP-粘体融合的因素在很大程度上仍然未知。
包围病毒含有蛋白质,可通过稳定高度弯曲的膜的形成来促进融合
毛孔。在LNP中,提高融合的替代策略包括使用具有非零赞助商自发曲率的脂质
被认为是“融合的”。但是,了解膜融合需要考虑
膜弹性超出了赞助曲率。具体而言,两个之间的融合孔的形成
双层由弯曲模量与高斯曲率模量之间的相互作用决定。然而,
在设计“ Fusogen ogen” LNP时,很少考虑高斯模量,即使双层融合是一种
它的价值最重要的场合。
这项工作的核心假设是,通过包括一类新的类别来提高LNP的高斯模量
称为高斯曲率脂质(GCLS)的脂质对LNP与融合的能力具有巨大影响
内体膜。此外,我们猜想GCL集成所增强的膜融合是
在活性质子泵送和内体酸化过程中,在生物系统中有协同偏爱。
我们结合了一个在RNA向细胞,膜蛋白纯化以及实验性的专家组合组合的团队,
计算和理论膜弹性通过两个目的测试中心假设。在目标1中,我们将
建立LNP的生物物理弹性特性,以最大程度地与内体融合。我们研究了如何
融合发生在显微镜水平上,即如果主要效应是融合的形成,则解密
毛孔和/或LNP是否将脂质喂给内体膜进行重塑,使它们更容易容易
破裂。在AIM 2中,我们通过测量膜活性和内体酸化的影响
活细胞的RNA递送和LNP的内体融合,完成了增加数量的GCL。我们也会
开发与内体膜质子泵重构的内体模拟囊泡系统(V-
ATPase)阐明活性质子泵送过程中LNP-粘膜融合的机理。
我们的工作将提出有关LNP内体逃生的新物理见解,并建立所需的LNP膜
属性以增强生活系统的融合,从而产生更有效的RNA输送车辆。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cecilia Leal其他文献
Cecilia Leal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cecilia Leal', 18)}}的其他基金
2023 Liquid Crystals Gordon Research Conference & Gordon Research Seminar
2023年液晶戈登研究会议
- 批准号:
10683604 - 财政年份:2023
- 资助金额:
$ 39.77万 - 项目类别:
Endosomal escape of lipid-based nanoparticles comprising Gaussian curvature lipids
包含高斯曲率脂质的基于脂质的纳米粒子的内体逃逸
- 批准号:
10640114 - 财政年份:2022
- 资助金额:
$ 39.77万 - 项目类别:
Endosomal escape of lipid-based nanoparticles comprising Gaussian curvature lipids
包含高斯曲率脂质的基于脂质的纳米粒子的内体逃逸
- 批准号:
10798629 - 财政年份:2022
- 资助金额:
$ 39.77万 - 项目类别:
A New Paradigm in Nanomedicine: can structural interiors of nanoparticles regulate cellular delivery?
纳米医学的新范式:纳米粒子的结构内部可以调节细胞传递吗?
- 批准号:
9169439 - 财政年份:2016
- 资助金额:
$ 39.77万 - 项目类别:
相似国自然基金
DGT原位测定全氟辛酸的生物污损效应及其影响机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
DGT原位测定全氟辛酸的生物污损效应及其影响机制研究
- 批准号:42207312
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
集成微流控芯片应用于高通量精准生物检体测定
- 批准号:
- 批准年份:2020
- 资助金额:60 万元
- 项目类别:面上项目
硫酸盐还原菌生物膜活性的原位快速测定研究
- 批准号:41876101
- 批准年份:2018
- 资助金额:62.0 万元
- 项目类别:面上项目
冬虫夏草抗菌肽的序列测定及其生物学功能研究
- 批准号:81803848
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Biophysical, Structural, and Cellular Dissection of COPI-Dependent Retrograde Trafficking Using a Coronavirus Toolkit
使用冠状病毒工具包对 COPI 依赖性逆行贩运进行生物物理、结构和细胞解剖
- 批准号:
10646999 - 财政年份:2023
- 资助金额:
$ 39.77万 - 项目类别:
Natural products inhibitors targeting homology-directed DNA repair for cancer therapy
针对癌症治疗的同源定向 DNA 修复的天然产物抑制剂
- 批准号:
10651048 - 财政年份:2023
- 资助金额:
$ 39.77万 - 项目类别:
High-throughput thermodynamic and kinetic measurements for variant effects prediction in a major protein superfamily
用于预测主要蛋白质超家族变异效应的高通量热力学和动力学测量
- 批准号:
10752370 - 财政年份:2023
- 资助金额:
$ 39.77万 - 项目类别:
A Modality-Agnostic Potency Assay Enabling Both Ex Vivo and In Vivo Genome Editing Therapeutics for Sickle Cell Disease
一种与模态无关的效力测定,可实现镰状细胞病的体外和体内基因组编辑治疗
- 批准号:
10668694 - 财政年份:2023
- 资助金额:
$ 39.77万 - 项目类别: