Endosomal escape of lipid-based nanoparticles comprising Gaussian curvature lipids
包含高斯曲率脂质的基于脂质的纳米粒子的内体逃逸
基本信息
- 批准号:10446400
- 负责人:
- 金额:$ 39.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-10 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:AffectBiological AssayBiophysicsCOVID-19COVID-19 vaccineCell LineCell Membrane ProteinsCellsCholesterolClinicalClinical TrialsCommunicationConfocal MicroscopyCryoelectron MicroscopyCytosolDNA deliveryDataDiffuseDiseaseDrug Delivery SystemsElasticityEndocytosis PathwayEndosomesEukaryotic CellEvaluationEventEvolutionFDA approvedFlow CytometryFluorescence Resonance Energy TransferFormulationGaussian modelGene DeliveryGenerationsGenetic DiseasesGoalsHealthHumanLabelLipidsMalignant NeoplasmsMeasuresMembraneMembrane FusionMessenger RNAMicrofluidicsMicroscopicModelingModulusMolecularNucleic AcidsOrganismPathway interactionsPhasePhospholipidsProcessPropertyProteinsProton PumpRNA deliveryResearch SupportRoentgen RaysRoleRuptureSaccharomyces cerevisiaeSeriesSpectrum AnalysisStressSwellingSystemTestingTherapeuticWorkYeastsbasecell typechronic infectiondelivery vehicledesignexperimental studyfluorophoreinnovationinsightinterdisciplinary approachlipid nanoparticlemRNA deliverymembrane activitymicroscopic imagingmimeticsmodels and simulationmolecular modelingnanoparticle deliverynovel strategiesprotein expressionprotein purificationreconstitutionsimulationtherapeutic RNAunilamellar vesiclevacuolar H+-ATPasevirus envelope
项目摘要
PROJECT SUMMARY
RNA therapeutics hold great promise for the treatment of a number of diseases significantly impacting human
health, such as chronic infections, genetic disorders, certain cancers, and presently COVID-19. The leading RNA
delivery vehicles approved by the FDA, as well as being considered in several clinical trials, are non-viral lipid-
based nanoparticles (LNPs). State-of-the art LNPs comprise standard phospholipids, cholesterol, and ionizable
lipids (ILs) that get protonated in acidic conditions. Analogous to enveloped virus, LNPs hijack the endocytic
pathway to enter cells. The efficacy of RNA delivery hinges on the ability of LNPs to escape the endosome by
fusing with its membrane. However, the factors that control LNPs–endosome fusion remain largely unknown.
Enveloped viruses contain proteins that promote fusion by stabilizing the formation of highly curved membrane
pores. In LNPs, alternative strategies to bolster fusion include using lipids with non-zero spontaneous curvature
that are elusively deemed “fusogenic”. However, understanding membrane fusion requires the consideration of
membrane elasticity beyond spontaneous curvature. Specifically, the formation of a fusion pore between two
bilayers is dictated by an interplay between the bending modulus and the Gaussian curvature modulus. However,
the Gaussian modulus is rarely considered when designing “fusogenic” LNPs, even though bilayer fusion is an
occasion for which its value matters the most.
The central hypothesis of this work is that raising the Gaussian modulus of LNPs by inclusion of a new class of
lipids termed Gaussian curvature lipids (GCLs) has a dramatic effect on the ability of LNPs to fuse with
endosomal membranes. Furthermore, we conjecture that membrane fusion, as boosted by GCL integration, is
synergistically favored in living systems during active proton pumping and endosome acidification.
We combine a team of experts in RNA delivery to cells, membrane protein purification as well as experimental,
computational, and theoretical membrane elasticity to test the central hypotheses via two aims. In Aim 1 we will
establish the biophysical elastic properties of LNPs to maximize fusion with endosomes. We investigate how
fusion takes place at a microscopic level, namely deciphering if the dominant effect is the formation of fusion
pores and/or if LNPs feed lipids to endosomal membranes remodeling them and making them more prone to
rupture. In Aim 2 we investigate the impact of membrane activity and endosome acidification by measuring in
live cells RNA delivery and endosomal fusion of LNPs comprising increasing amounts of GCLs. We will also
develop endosome-mimetic vesicular systems reconstituted with endosomal membrane proton pumps (V-
ATPase) to elucidate the mechanism of LNP-endosomal membrane fusion during active proton pumping.
Our work will raise new physical insights on LNP endosomal escape and establish the desired LNP membrane
properties to boost fusion in living systems, resulting in substantially more effective RNA delivery vehicles.
项目概要
RNA疗法对于治疗许多对人类有重大影响的疾病有着巨大的希望
健康,例如慢性感染、遗传性疾病、某些癌症以及目前的 COVID-19。
经 FDA 批准并在多项临床试验中考虑的递送载体是非病毒脂质
基于纳米颗粒 (LNP) 的最先进的 LNP 包含标准磷脂、胆固醇和可电离的物质。
与包膜病毒类似,LNP 会劫持内吞细胞。
RNA 进入细胞的途径取决于 LNP 逃逸内体的能力。
然而,控制 LNPs 与内体融合的因素仍然很大程度上未知。
有包膜病毒含有通过稳定高度弯曲膜的形成来促进融合的蛋白质
在 LNP 中,促进融合的替代策略包括使用具有非零自发曲率的脂质。
然而,理解膜融合需要考虑以下因素:
具体来说,膜弹性超出自发曲率,在两者之间形成融合孔。
双层由弯曲模量和高斯曲率模量之间的相互作用决定。
在设计“融合”LNP 时很少考虑高斯模量,尽管双层融合是一种
其价值最重要的场合。
这项工作的中心假设是通过包含一类新的 LNP 来提高 LNP 的高斯模量
称为高斯曲率脂质 (GCL) 的脂质对 LNP 融合的能力具有显着影响
此外,我们推测,GCL 整合促进了膜融合。
在活性质子泵和内体酸化过程中,在生命系统中具有协同作用。
我们拥有一支由 RNA 递送至细胞、膜蛋白纯化以及实验、
在目标 1 中,我们将通过计算和理论膜弹性来测试中心假设。
建立 LNP 的生物物理弹性特性,以最大限度地与内涵体融合。
融合发生在微观层面,即破译主导效应是否是融合的形成
毛孔和/或如果 LNP 将脂质供给内体膜,重塑它们并使它们更容易发生
在目标 2 中,我们通过测量来研究膜活性和内体酸化的影响。
活细胞 RNA 递送和 LNP 的内体融合,包含越来越多的 GCL。
开发用内体膜质子泵(V-
ATPase)阐明活性质子泵期间 LNP-内体膜融合的机制。
我们的工作将提出关于 LNP 内体逃逸的新物理见解并建立所需的 LNP 膜
促进生命系统融合的特性,从而产生更有效的 RNA 递送载体。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cecilia Leal其他文献
Cecilia Leal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cecilia Leal', 18)}}的其他基金
2023 Liquid Crystals Gordon Research Conference & Gordon Research Seminar
2023年液晶戈登研究会议
- 批准号:
10683604 - 财政年份:2023
- 资助金额:
$ 39.77万 - 项目类别:
Endosomal escape of lipid-based nanoparticles comprising Gaussian curvature lipids
包含高斯曲率脂质的基于脂质的纳米粒子的内体逃逸
- 批准号:
10640114 - 财政年份:2022
- 资助金额:
$ 39.77万 - 项目类别:
Endosomal escape of lipid-based nanoparticles comprising Gaussian curvature lipids
包含高斯曲率脂质的基于脂质的纳米粒子的内体逃逸
- 批准号:
10798629 - 财政年份:2022
- 资助金额:
$ 39.77万 - 项目类别:
A New Paradigm in Nanomedicine: can structural interiors of nanoparticles regulate cellular delivery?
纳米医学的新范式:纳米粒子的结构内部可以调节细胞传递吗?
- 批准号:
9169439 - 财政年份:2016
- 资助金额:
$ 39.77万 - 项目类别:
相似国自然基金
基于Bacillus subtilis 细胞传感器介导的肠道环境中结直肠癌相关生物标志物的动态检测策略
- 批准号:82372355
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
CRISPR传感技术对稻田微生物甲基汞关键基因的检测机制研究
- 批准号:42377456
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
一种用于生物呼吸标记物检测的中红外全固态超短脉冲激光器的研究
- 批准号:62305188
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于微流控芯片的赤潮微藻及其生物毒素同步快速定量检测研究
- 批准号:42307568
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于镍纳米粒子催化新型生物传感器研制及应用于中药残留检测
- 批准号:82360857
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Biophysical, Structural, and Cellular Dissection of COPI-Dependent Retrograde Trafficking Using a Coronavirus Toolkit
使用冠状病毒工具包对 COPI 依赖性逆行贩运进行生物物理、结构和细胞解剖
- 批准号:
10646999 - 财政年份:2023
- 资助金额:
$ 39.77万 - 项目类别:
Natural products inhibitors targeting homology-directed DNA repair for cancer therapy
针对癌症治疗的同源定向 DNA 修复的天然产物抑制剂
- 批准号:
10651048 - 财政年份:2023
- 资助金额:
$ 39.77万 - 项目类别:
High-throughput thermodynamic and kinetic measurements for variant effects prediction in a major protein superfamily
用于预测主要蛋白质超家族变异效应的高通量热力学和动力学测量
- 批准号:
10752370 - 财政年份:2023
- 资助金额:
$ 39.77万 - 项目类别:
A Modality-Agnostic Potency Assay Enabling Both Ex Vivo and In Vivo Genome Editing Therapeutics for Sickle Cell Disease
一种与模态无关的效力测定,可实现镰状细胞病的体外和体内基因组编辑治疗
- 批准号:
10668694 - 财政年份:2023
- 资助金额:
$ 39.77万 - 项目类别: