Accelerating phage evolution and tools via synthetic biology and machine learning
通过合成生物学和机器学习加速噬菌体进化和工具
基本信息
- 批准号:10443537
- 负责人:
- 金额:$ 64.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-16 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:Acinetobacter baumanniiAddressAlkynesAmino Acid SequenceAntibiotic ResistanceAntibiotic TherapyAntibioticsAzidesBacteriaBacterial GenomeBacterial InfectionsBacteriophage T4BacteriophagesBindingBinding ProteinsBiosensing TechniquesBiosensorCRISPR/Cas technologyCapsidChemistryClinicalComputer ModelsConsumptionCustomDNA Restriction-Modification EnzymesDataData SetDetectionDevelopmentDiagnosisDiseaseDrug resistanceElementsEngineeringEnterobacteriaceaeEnvironmentEscherichia coliEvolutionFamilyFiberFoodFutureGenesGenomeGoalsHealthHumanInfectionInnate Immune ResponseInnate Immune SystemInterventionLifeLiteratureMachine LearningMagnetic nanoparticlesMagnetismMethodsMissionModelingModificationMulti-Drug ResistanceMultidrug-resistant AcinetobacterMultiple Bacterial Drug ResistanceNatural ImmunityOutcomePatientsPersonsPhenotypePolyethylene GlycolsPreventionProcessPropertyPublic HealthReportingResearchResearch PersonnelResistanceSamplingSiteSpecificitySurfaceSystemTailTechnologyTherapeuticTherapeutic AgentsTimeTrainingUnited States National Institutes of HealthViralVirusarms racebasedesignhuman diseaseinnovationnext generationnovelpathogenpathogenic bacteriarapid detectionreceptorresistance mechanismscreeningsynthetic biologytherapeutically effectivetoolunnatural amino acids
项目摘要
Summary
Phages, which are the naturally evolved predators of bacteria, may hold the key to combating bacterial
pathogens, including the looming threat of multidrug resistant bacteria. Phages are viruses which while harmless
to humans and have been successfully engineered as tools to separate, concentrate, and detect their bacterial
hosts. Additionally, phages have been used as therapeutic agents to treat patients infected with pathogens
resistant to known antibiotics. While the potential benefits of phages are numerous, certain limitations must be
addressed in order to fully employ them. The central hypothesis of this proposal is that both top-down and
bottom-up approaches can be utilized to design and synthesize novel phages, through a combination of synthetic
biology and machine learning. This will result in phage-based tools with increased functionality and customizable
host ranges. The rationale for the proposed research is that as the threat of bacterial infections including those
with multi-drug resistance continues to grow, phages, which have evolved to efficiently recognize and kill
bacteria, will become indispensable tools. Therefore, the ability to rapidly design and engineer new phages for
biosensing and therapeutics will be a critical advantage to human health. The proposal contains three specific
aims which are supported by preliminary data and cited literature. Aim 1: Site-directed conjugation for advanced
phage-based biosensors and therapeutics. Under this aim, phages will be modified with alkyne-containing
unnatural amino acids allowing their direct conjugation to 1) azide decorated magnetic nanoparticles, and 2)
azide terminated polyethylene glycol. The modifications will allow the development of magnetic phages for
bacteria separation and detection, and phages that are more effective therapeutics due to their ability to avoid a
patient’s innate immune response, respectively. Aim 2: Decoding phage biorecognition elements using machine
learning. In this aim, machine learning will be used to model the binding of phages and their bacterial hosts. The
model will enable the prediction of host interactions as well as allow the design and synthesis of novel phage tail
fibers which can target specific bacterial isolates. Aim 3: Repurposing phage biorecognition for a broader host
ranges. Under the final aim, phage-binding proteins will be replaced with those known to recognize conserved
regions of the bacterial LPS, resulting in a phage with a much broader host range. This approach is innovative
because it uses top-down characterizations for bottom-up design and synthesis of novel phages. Traditional
phage screening methods will be replaced with the rapid synthesis of phages, which are optimized for a particular
bacterial isolate. Following the successful completion of the specific aims, the expected outcome is the design
and synthesis of phages that can be used to target a selected group of bacteria within Enterobacteriaceae for
advanced biosensing and therapeutics. A publically available computer model will allow rapid design of custom
phage biorecognition elements which can be added to functionalized phages. These technologies will allow
researchers to tip the scales of the co-evolutionary arms race between phage and bacteria.
概括
噬菌体是细菌自然进化的捕食者,可能是对抗细菌的关键
病原体,包括迫在眉睫的多重耐药细菌的威胁,噬菌体是病毒,虽然无害。
人类并已成功设计为分离、浓缩和检测细菌的工具
此外,噬菌体已被用作治疗剂来治疗感染病原体的患者。
虽然噬菌体的潜在好处很多,但也有一定的局限性。
为了充分利用它们,该提案的中心假设是自上而下和自上而下的。
自下而上的方法可用于通过合成的组合来设计和合成新型噬菌体
这将导致基于噬菌体的工具具有更多的功能和可定制的功能。
拟议研究的理由是,细菌感染的威胁包括那些。
随着多重耐药性的不断增长,噬菌体已经进化出能够有效识别和杀死细菌的能力。
因此,快速设计和改造新噬菌体的能力将成为不可或缺的工具。
生物传感和治疗将为人类健康带来关键优势 该提案包含三个具体内容。
由初步数据和引用文献支持的目标 目标 1:高级定点共轭。
基于噬菌体的生物传感器和疗法在此目标下,噬菌体将被含有炔烃的修饰。
非天然氨基酸可直接与 1) 叠氮化物修饰的磁性纳米颗粒和 2) 缀合
叠氮化物封端的聚乙二醇将允许磁性噬菌体的开发。
细菌分离和检测以及噬菌体是更有效的治疗方法,因为它们能够避免
目标 2:使用机器解码噬菌体生物识别元件。
为此,机器学习将用于模拟噬菌体及其细菌宿主的结合。
该模型将能够预测宿主相互作用,并允许设计和合成新型噬菌体尾部
目标 3:为更广泛的宿主重新利用噬菌体生物识别。
根据最终目标,噬菌体结合蛋白将被已知的识别保守蛋白的蛋白所取代。
细菌 LPS 的区域,从而产生具有更广泛宿主范围的噬菌体,这种方法是创新的。
因为它使用自上而下的表征来自下而上地设计和合成新型传统噬菌体。
噬菌体筛选方法将被噬菌体快速合成所取代,噬菌体针对特定噬菌体进行了优化
成功完成特定目标后,预期结果就是设计。
以及噬菌体的合成,该噬菌体可用于靶向肠杆菌科中选定的一组细菌
先进的生物传感和治疗方法可以通过公开的计算机模型进行快速定制设计。
这些技术将允许添加到功能化噬菌体中的噬菌体生物识别元件。
研究人员将扭转噬菌体和细菌之间共同进化军备竞赛的规模。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sam R Nugen其他文献
Sam R Nugen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sam R Nugen', 18)}}的其他基金
Bioengineering Phage-based Biosensors with Genetic Specificity and High Sensitivity
具有遗传特异性和高灵敏度的生物工程噬菌体生物传感器
- 批准号:
10727412 - 财政年份:2023
- 资助金额:
$ 64.32万 - 项目类别:
Accelerating phage evolution and tools via synthetic biology and machine learning
通过合成生物学和机器学习加速噬菌体进化和工具
- 批准号:
10663875 - 财政年份:2019
- 资助金额:
$ 64.32万 - 项目类别:
Accelerating phage evolution and tools via synthetic biology and machine learning
通过合成生物学和机器学习加速噬菌体进化和工具
- 批准号:
10017215 - 财政年份:2019
- 资助金额:
$ 64.32万 - 项目类别:
Phage-Enabled Lab-on-a-Filter for Pathogen Separation, Concentration, and Detection
用于病原体分离、浓缩和检测的噬菌体实验室过滤器
- 批准号:
9920143 - 财政年份:2018
- 资助金额:
$ 64.32万 - 项目类别:
Phage-Enabled Lab-on-a-Filter for Pathogen Separation, Concentration, and Detection
用于病原体分离、浓缩和检测的噬菌体实验室过滤器
- 批准号:
9762099 - 财政年份:2018
- 资助金额:
$ 64.32万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Pharmacokinetics-Based DNA-Encoded Library Screening
基于药代动力学的 DNA 编码文库筛选
- 批准号:
10644211 - 财政年份:2023
- 资助金额:
$ 64.32万 - 项目类别:
DNAzymes for Site-Specific DNA and RNA Nucleobase Modification
用于位点特异性 DNA 和 RNA 核碱基修饰的 DNAzyme
- 批准号:
10630686 - 财政年份:2023
- 资助金额:
$ 64.32万 - 项目类别:
Overcoming resistance to KRAS inhibitors through a fragment-based chemoproteomics approach
通过基于片段的化学蛋白质组学方法克服对 KRAS 抑制剂的耐药性
- 批准号:
10722113 - 财政年份:2023
- 资助金额:
$ 64.32万 - 项目类别:
Multifunctional Biodegradable Zwitterionic Polymer-Drug Conjugates for Multidrug Co-Delivery
用于多药联合递送的多功能可生物降解两性离子聚合物-药物缀合物
- 批准号:
10638101 - 财政年份:2023
- 资助金额:
$ 64.32万 - 项目类别:
3D bioprinting of regenerative, corneal cell-laden inks to treat corneal blindness
3D 生物打印充满角膜细胞的再生墨水来治疗角膜失明
- 批准号:
10606474 - 财政年份:2023
- 资助金额:
$ 64.32万 - 项目类别: